v1 (Legacy)

Migrating to v2

v2 is the first major version release of Remeda in almost 2 years. We took this opportunity to gather as many breaking changes as possible into a single release, focusing on modernization and simplification. Importantly, this release doesn’t change any major aspect of Remeda’s architecture. Almost half of Remeda’s exported functions don’t have any breaking changes, neither in their runtime nor their typing!

Migrating

For most projects, only minor changes to how some functions are called will be necessary.

Some functions have parameter types or return types that have changed; these may require adjustments either upstream or downstream from where the function is called. These changes need more attention as they might expose existing bugs in your codebase (similar to better typing or a new lint rule).

A few functions have breaking changes in their runtime implementation, mainly in how edge-cases are handled. These also require careful attention during migration to ensure the new implementation behaves as expected.

To facilitate this process, we provide a function-by-function migration guide that details the changes for each function, includes examples of potential breakages, and offers solutions, including ways to maintain previous behaviors.

We recommend first updating to the latest v1 version, fixing any deprecation errors, and then updating to the latest version of Remeda, using this guide to address any remaining issues.

The following chapters provide an overview of the changes, offering a broader perspective and motivation for each change. All relevant information for each function is repeated in each function’s migration documentation.

Environment

Remeda v2 is built for modern environments. Browsers and runtimes that don’t support the minimum requirements might still be able to use some functions (if their implementation doesn’t rely on anything more modern), but those cases will not be supported.

Runtime ≥ ES2022

Previously, Remeda compiled down to a target of ES5 (and ES2017 lib). This meant that modern JavaScript features (like object and array spreading) had to be polyfilled and shipped with each function that used them. It also meant that we couldn’t use certain features, like built-in iterators (e.g., Array.prototype.entries) or bigints.

v2 is compiled with a target of ES2022 (and ES2022 lib), which is supported by all currently maintained Node.js versions (18+) and by ~93.8% of all browsers.

TypeScript ≥ 5.1

The minimum TypeScript version our exported types are tested against is 5.1, up from 4.2 in v1.

We currently don’t use any new language features that were only added in recent versions of TypeScript, but we might want to use them in the future without requiring a breaking change.

Importing

Remeda v2 builds its packaged files using tsup (replacing the bare tsc build of the previous version), with full support for tree-shaking, code splitting, and minification. The output config is validated using both attw and publint. This results in completely different output artifacts and structure for both CommonJS and ESM. We don’t expect this to have any impact on your project; it should integrate cleanly with any modern JS build tool, bundler, and runtime.

Removed Variants

In v1, Remeda offered several “variants” of the base runtime implementation and typing via properties added to the exported function. These have been removed in v2, and their usage merged into the base functions.

Indexed

The indexed variant allowed callback functions (predicates, mappers, etc.) to use 2 additional parameters in their signature: the index, representing the offset of the item within the data array, and the data array itself. These were provided to most functions but weren’t offered consistently. The implementation added runtime checks on every invocation, even when the indexed variant wasn’t used. In v2, the indexed “variant” of the callback is now available on the base implementation and has been added to all functions. This aligns with the signatures of the built-in functions of Array.prototype.

const DATA = [1, 2, 3] as const;

// Was
map.indexed(DATA, (item, index) => item + index);

// Now
map(DATA, (item, index) => item + index);

Object-based functions (like mapKeys) also got the same treatment, where the callbacks are called with the prop’s key as the 2nd parameter (instead of the numerical index for arrays).

Migration

For calls that used the indexed variant, simply remove the .indexed suffix. For the rest, you most likely don’t need to do anything.

Note: If the callback function was passed by reference and not via an inline function, your callback function would now be called with additional parameters. If the function signature no longer matches, TypeScript would complain about the type mismatch. In more complex cases, if the function signature does match, it will now be called with additional parameters and might compute results differently. This is rare and can only happen if the callback function already accepted an optional number or number | undefined as its second parameter. To fix this, simply wrap the callback with an inline function that takes a single parameter. ESLint’s Unicorn plugin’s unicorn/no-array-callback-reference is recommended to detect potential cases of this issue.

const DATA = ["1", "2", "3"] as const;

// BUG! `parseInt` takes an optional 2nd `number` param for the radix!
map(DATA, Number.parseInt); //=> [1, NaN, NaN]

// Fix:
map(DATA, (item) => Number.parseInt(item)); //=> [1, 2, 3]

Strict

We sometimes come up with improved typing for a function’s return value. The type is often more complex and makes more assumptions about the inputs, making it incompatible with the existing type. In these cases, we created a strict variant with the same runtime implementation but with improved typing. In v2, all strict variants are now the default, removing the original base typing.

This change can result in downstream assumptions about types breaking or becoming invalid. In most cases, we believe these are valid typing issues being surfaced for the first time because of the improved typing.

const DATA = ["1", "2", "3"] as const;

const was = map(DATA, (item) => Number.parseInt(item));
//    ^? number[];

const now = map(DATA, (item) => Number.parseInt(item));
//    ^? [number, number, number]

Migration

For calls that used the strict variant, simply remove the .strict suffix. For the rest, you most likely don’t need to do anything.

If you encounter new TypeScript issues following this change, we recommend first checking if this issue is the result of the better typing. Note that if you use inferred typing a lot, the issue might only surface further downstream and not at the place the function is called.

To bypass or work around these issues:

  • The function-specific migration guides below also suggest possible type assertions that could be used to get the “legacy” types back.
  • Simplify the types by using the TypeScript satisfies keyword instead of as const.
  • You can use explicit, less specific types in the generics of the functions to force them to a specific type instead of the inferred type.
  • Most of the new types should be extendable by the old types, meaning you can cast the output to the type you expect to simplify the result.
  • Some new types might be hard to read and understand via the IDE’s tooltips. In those cases, you can use Type-Fest’s Simplify to debug the resulting type (in most cases, we already wrap the types with Simplify).

Important: The types might have edge cases that we didn’t foresee and test against. If you feel that the computed type is wrong, please report it on GitHub.

// Downstream bugs revealed:

// @ts-expect-error [ts(2493)]Tuple type '[number]' of length '1' has no element at index '1'.
const [, buggy] = map(["1"] as const, (x) => Number.parseInt(x));

// Get the legacy behavior:

const strict = map(["1", "2", "3"] as const, (x) => Number.parseInt(x));
//    ^? [number, number, number]

const satisfied = map(["1", "2", "3"] satisfies `${number}`[], (x) =>
  //  ^? number[];
  Number.parseInt(x),
);

const generalized = map<`${number}`[], number[]>(
  ["1", "2", "3"] as const,
  (x) =>
    //  ^? number[]
    Number.parseInt(x),
);

const casted = map(["1", "2", "3"] as `${number}`[], (x) =>
  //  ^? number[];
  Number.parseInt(x),
);

const castedOutput = map(["1", "2", "3"] as const, (x) =>
  Number.parseInt(x),
) as number[];

Lazy (Internal)

The lazy variant wasn’t documented but still existed on many functions. Unlike the previous variants, it wasn’t another implementation of the function, but a tool used internally by the purry and pipe functions to allow lazy evaluation of functions. This abstraction has been completely removed.

Migration

If you exported a lazy property from your internal functions to make them lazy within Remeda’s pipe, use purry with the lazy implementation as the 3rd parameter instead.

We consider this API internal and thus don’t provide documentation or export the types and utilities that would make it easier to work with (the ones we use internally). If you need these APIs, please open an issue on GitHub.

Headless Invocation

A few single-parameter functions in v1 did not offer a properly curried “dataLast” implementation and instead suggested using a “headless” version for “dataLast” cases (e.g., keys). This created problems with more advanced types not being inferred correctly, requiring a properly curried version instead (e.g., first). We felt that this case-by-case difference made your code more error-prone and confusing. In v2, all single-parameter functions should now be called with no parameters to get their dataLast implementation.

The only headless functions remaining are type-guards (e.g., isString, isDefined).

// Was
pipe(DATA, keys);
map(DATA, identity);
filter(DATA, isString);

// Now
pipe(DATA, keys());
map(DATA, identity());
filter(DATA, isString); // Not changed!

Migration

Most call sites should now show an error when using the headless function because TypeScript wouldn’t be able to infer the type correctly. However, because there is no way to deprecate the “headless” nature of a function (it’s just a function-object), you will have to manually search for them. The functions are: clone, identity, fromPairs*, keys, randomString, toPairs*, and values.

* These functions have been renamed and their renamed versions already don’t support headless invocation in v1.

Renamed and Removed

Removed

To offer the best possible functions, we deemed several functions as redundant when they could be easily replaced with other existing functions, resulting in code of the same length. In all these cases, the replacement is a composite of at most three functions.

// Was
compact(DATA);

// Now
filter(DATA, isTruthy);

Other functions were removed because their logic was either split into several other functions or merged into a more general-purpose tool to allow better code reuse and improved typing.

// Was
flatten(DATA);
flattenDeep(DATA);

// Now
flat(DATA);
flat(DATA, 10);

The functions are: compact, countBy, flatMapToObj, flatten, flattenDeep, isObject, maxBy, minBy, noop, reject, type, and zipObj.

Renamed

Remeda took a lot of its early inspiration from Lodash and Ramda. Many functions were named similarly to their equivalents in those libraries, but these names don’t always align with the names chosen by the ECMAScript standard. We chose to prefer the standard names.

// Was
pipe(DATA, toPairs(), ..., fromPairs());

// Now
pipe(DATA, entries(), ..., fromEntries())

We also decided to improve some names by dropping abbreviations and partial spellings in favor of proper English words.

// Was
uniq(DATA);

// Now
unique(DATA);

The functions are: createPipe, equals, fromPairs, isNil, toPairs, uniq, uniqBy, and uniqWith.

Migration

The latest versions of Remeda v1 have all renamed and removed functions deprecated with suggestions for how to migrate. Doing this while still in v1 would make it easier to replace them one-by-one. Otherwise, this document has a deprecated section with migration instructions too.

Object Keys

Most of the functions that provided a way to traverse objects relied on the built-in Object.entries. This function has limitations on which properties it iterates upon (enumerates):

  • number keys are cast as string.
  • symbol keys are ignored.

To properly reflect this, we had to change the typing for both the callback functions and the return types. Functions that returned an object would either drop the symbol keys (if constructing a new object) or copy them as-is (if cloning the original object).

It’s important to note that only the types have changed here; the runtime behavior remains the same. number keys are always cast as strings in JavaScript; myObj[0] and myObj["0"] access the same property. This change will not construct your objects differently than they used to be. To provide more utility, the implementations of omit and omitBy have been changed to preserve symbol keys.

Read more about this on MDN.

Migration

The biggest differences are due to the change in how we handle symbol keys. symbol usage is rare, and if you don’t know you use it in your project, you most likely don’t.

number keys require a little more attention, especially if you are checking or using the keys by value (and not just passing them around). Because only types have changed (and not the runtime behavior), you might run into new TypeScript (or ESLint) warnings and errors due to surfacing previously existing issues.

The affected functions are: entries, evolve, forEachObj, keys, mapKeys, mapValues, omit, omitBy, and pickBy.

Re-Implementations

Several functions had their runtime implementation changed, including changes to their semantics, so that they’d return different results in v2 for some edge cases. These changes are documented below for each function. The functions are: clone, difference, intersection, omit, omitBy, purry, sample, and zipWith.


Adds two numbers.

Data First
R.add(value, addend);
R.add(10, 5); // => 15
R.add(10, -5); // => 5
R.reduce([1, 2, 3, 4], R.add, 0); // => 10
Data Last
R.add(addend)(value);
R.add(5)(10); // => 15
R.add(-5)(10); // => 5
R.map([1, 2, 3, 4], R.add(1)); // => [2, 3, 4, 5]

Rounds up a given number to a specific precision. If you'd like to round up to an integer (i.e. use this function with constant precision === 0), use Math.ceil instead, as it won't incur the additional library overhead.

Data First
R.ceil(value, precision);
R.ceil(123.9876, 3); // => 123.988
R.ceil(483.22243, 1); // => 483.3
R.ceil(8541, -1); // => 8550
R.ceil(456789, -3); // => 457000
Data Last
R.ceil(precision)(value);
R.ceil(3)(123.9876); // => 123.988
R.ceil(1)(483.22243); // => 483.3
R.ceil(-1)(8541); // => 8550
R.ceil(-3)(456789); // => 457000

Clamp the given value within the inclusive min and max bounds.

Data First
R.clamp(value, { min, max });
clamp(10, { min: 20 }); // => 20
clamp(10, { max: 5 }); // => 5
clamp(10, { max: 20, min: 5 }); // => 10
Data Last
R.clamp({ min, max })(value);
clamp({ min: 20 })(10); // => 20
clamp({ max: 5 })(10); // => 5
clamp({ max: 20, min: 5 })(10); // => 10

Divides two numbers.

Data First
R.divide(value, divisor);
R.divide(12, 3); // => 4
R.reduce([1, 2, 3, 4], R.divide, 24); // => 1
Data Last
R.divide(divisor)(value);
R.divide(3)(12); // => 4
R.map([2, 4, 6, 8], R.divide(2)); // => [1, 2, 3, 4]

Rounds down a given number to a specific precision. If you'd like to round down to an integer (i.e. use this function with constant precision === 0), use Math.floor instead, as it won't incur the additional library overhead.

Data First
R.floor(value, precision);
R.floor(123.9876, 3); // => 123.987
R.floor(483.22243, 1); // => 483.2
R.floor(8541, -1); // => 8540
R.floor(456789, -3); // => 456000
Data Last
R.floor(precision)(value);
R.floor(3)(123.9876); // => 123.987
R.floor(1)(483.22243); // => 483.2
R.floor(-1)(8541); // => 8540
R.floor(-3)(456789); // => 456000

Multiplies two numbers.

Data First
R.multiply(value, multiplicand);
R.multiply(3, 4); // => 12
R.reduce([1, 2, 3, 4], R.multiply, 1); // => 24
Data Last
R.multiply(multiplicand)(value);
R.multiply(4)(3); // => 12
R.map([1, 2, 3, 4], R.multiply(2)); // => [2, 4, 6, 8]

Compute the product of the numbers in the array, or return 1 for an empty array.

Data First
R.product(data);
R.product([1, 2, 3]); // => 6
R.product([]); // => 1
Data Last
R.product()(data);
R.pipe([1, 2, 3], R.product()); // => 6
R.pipe([], R.product()); // => 0

Rounds a given number to a specific precision. If you'd like to round to an integer (i.e. use this function with constant precision === 0), use Math.round instead, as it won't incur the additional library overhead.

Data First
R.round(value, precision);
R.round(123.9876, 3); // => 123.988
R.round(483.22243, 1); // => 483.2
R.round(8541, -1); // => 8540
R.round(456789, -3); // => 457000
Data Last
R.round(precision)(value);
R.round(3)(123.9876); // => 123.988
R.round(1)(483.22243); // => 483.2
R.round(-1)(8541); // => 8540
R.round(-3)(456789); // => 457000

Subtracts two numbers.

Data First
R.subtract(value, subtrahend);
R.subtract(10, 5); // => 5
R.subtract(10, -5); // => 15
R.reduce([1, 2, 3, 4], R.subtract, 20); // => 10
Data Last
R.subtract(subtrahend)(value);
R.subtract(5)(10); // => 5
R.subtract(-5)(10); // => 15
R.map([1, 2, 3, 4], R.subtract(1)); // => [0, 1, 2, 3]

Sums the numbers in the array, or return 0 for an empty array.

Data First
R.sum(data);
R.sum([1, 2, 3]); // => 6
R.sum([]); // => 0
Data Last
R.sum()(data);
R.pipe([1, 2, 3], R.sum()); // => 6
R.pipe([], R.sum()); // => 0

Add a new property to an object.

Data First
R.addProp(obj, prop, value);
R.addProp({ firstName: "john" }, "lastName", "doe"); // => {firstName: 'john', lastName: 'doe'}
Data Last
R.addProp(prop, value)(obj);
R.addProp("lastName", "doe")({ firstName: "john" }); // => {firstName: 'john', lastName: 'doe'}

Creates a deep copy of the value. Supported types: Array, Object, Number, String, Boolean, Date, RegExp. Functions are assigned by reference rather than copied.

Breaking changes in v2
R.clone(value);

entries

Strict
View source on GitHub

Returns an array of key/values of the enumerable properties of an object.

Breaking changes in v2
Data First
R.entries(object);
R.entries.strict(object);
R.entries({ a: 1, b: 2, c: 3 }); // => [['a', 1], ['b', 2], ['c', 3]]
R.entries.strict({ a: 1 } as const); // => [['a', 1]] typed Array<['a', 1]>
Data Last
R.entries()(object);
R.entries.strict()(object);
R.pipe({ a: 1, b: 2, c: 3 }, entries()); // => [['a', 1], ['b', 2], ['c', 3]]
R.pipe({ a: 1 } as const, entries.strict()); // => [['a', 1]] typed Array<['a', 1]>

Creates a new object by applying functions that is included in evolver object parameter to the data object parameter according to their corresponding path.

Functions included in evolver object will not be invoked if its corresponding key does not exist in the data object. Also, values included in data object will be kept as is if its corresponding key does not exist in the evolver object.

Breaking changes in v2
Data First
R.evolve(data, evolver);
const evolver = {
  count: add(1),
  time: { elapsed: add(1), remaining: add(-1) },
};
const data = {
  id: 10,
  count: 10,
  time: { elapsed: 100, remaining: 1400 },
};
evolve(data, evolver);
// => {
//   id: 10,
//   count: 11,
//   time: { elapsed: 101, remaining: 1399 },
// }
Data Last
R.evolve(evolver)(data);
const evolver = {
  count: add(1),
  time: { elapsed: add(1), remaining: add(-1) },
};
const data = {
  id: 10,
  count: 10,
  time: { elapsed: 100, remaining: 1400 },
};
R.pipe(object, R.evolve(evolver));
// => {
//   id: 10,
//   count: 11,
//   time: { elapsed: 101, remaining: 1399 },
// }

forEachObj

View source on GitHub

Iterate an object using a defined callback function. The original object is returned.

Data First
R.forEachObj(object, fn);
R.forEachObj({ a: 1 }, (val) => {
  console.log(`${val}`);
}); // "1"
R.forEachObj.indexed({ a: 1 }, (val, key, obj) => {
  console.log(`${key}: ${val}`);
}); // "a: 1"
Data Last
R.forEachObj(fn)(object);
R.pipe(
  { a: 1 },
  R.forEachObj((val) => console.log(`${val}`)),
); // "1"
R.pipe(
  { a: 1 },
  R.forEachObj.indexed((val, key) => console.log(`${key}: ${val}`)),
); // "a: 1"

fromEntries

Strict
View source on GitHub

Creates a new object from an array of tuples by pairing up first and second elements as {[key]: value}. If a tuple is not supplied for any element in the array, the element will be ignored If duplicate keys exist, the tuple with the greatest index in the input array will be preferred.

The strict option supports more sophisticated use-cases like those that would result when calling the strict toPairs function.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • indexBy - Builds an object from an array of values and a mapper for keys.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.fromEntries(tuples);
R.fromEntries.strict(tuples);
R.fromEntries([
  ["a", "b"],
  ["c", "d"],
]); // => {a: 'b', c: 'd'} (type: Record<string, string>)
R.fromEntries.strict(["a", 1] as const); // => {a: 1} (type: {a: 1})
Data Last
R.fromEntries()(tuples);
R.fromEntries.strict()(tuples);
R.pipe(
  [
    ["a", "b"],
    ["c", "d"],
  ],
  R.fromEntries(),
); // => {a: 'b', c: 'd'} (type: Record<string, string>)
R.pipe(["a", 1] as const, R.fromEntries.strict()); // => {a: 1} (type: {a: 1})

Creates an object that maps each key in data to the result of mapper for that key. Duplicate keys are overwritten, guaranteeing that mapper is run for each item in data.

There are several other functions that could be used to build an object from an array:

  • indexBy - Builds an object from an array of values and a mapper for keys.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • fromEntries - Builds an object from an array of key-value pairs.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.fromKeys(data, mapper);
R.fromKeys(["cat", "dog"], R.length()); // { cat: 3, dog: 3 } (typed as Partial<Record<"cat" | "dog", number>>)
R.fromKeys([1, 2], R.add(1)); // { 1: 2, 2: 3 } (typed as Partial<Record<1 | 2, number>>)
Data Last
R.fromKeys(mapper)(data);
R.pipe(["cat", "dog"], R.fromKeys(R.length())); // { cat: 3, dog: 3 } (typed as Partial<Record<"cat" | "dog", number>>)
R.pipe([1, 2], R.fromKeys(R.add(1))); // { 1: 2, 2: 3 } (typed as Partial<Record<1 | 2, number>>)

invert

Lazy
View source on GitHub

Returns an object whose keys and values are swapped. If the object contains duplicate values, subsequent values will overwrite previous values.

Data First
R.invert(object);
R.invert({ a: "d", b: "e", c: "f" }); // => { d: "a", e: "b", f: "c" }
Data Last
R.invert()(object);
R.pipe({ a: "d", b: "e", c: "f" }, R.invert()); // => { d: "a", e: "b", f: "c" }

keys

Strict
Lazy
View source on GitHub

Returns a new array containing the keys of the array or object.

Breaking changes in v2
Data First
R.keys(source);
R.keys.strict(source);
R.keys(["x", "y", "z"]); // => ['0', '1', '2']
R.keys({ a: "x", b: "y", c: "z" }); // => ['a', 'b', 'c']
R.keys.strict({ a: "x", b: "y", 5: "z" } as const); // => ['a', 'b', '5'], typed Array<'a' | 'b' | '5'>
R.pipe(["x", "y", "z"], R.keys); // => ['0', '1', '2']
R.pipe({ a: "x", b: "y", c: "z" }, R.keys); // => ['a', 'b', 'c']
R.pipe({ a: "x", b: "y", c: "z" }, R.keys, R.first()); // => 'a'
R.pipe({ a: "x", b: "y", 5: "z" } as const, R.keys.strict); // => ['a', 'b', '5'], typed Array<'a' | 'b' | '5'>

Maps keys of object and keeps the same values.

Data First
R.mapKeys(object, fn);
R.mapKeys({ a: 1, b: 2 }, (key, value) => key + value); // => { a1: 1, b2: 2 }
Data Last
R.mapKeys(fn)(object);
R.pipe(
  { a: 1, b: 2 },
  R.mapKeys((key, value) => key + value),
); // => { a1: 1, b2: 2 }

Maps values of object and keeps the same keys.

Data First
R.mapValues(object, fn);
R.mapValues({ a: 1, b: 2 }, (value, key) => value + key); // => {a: '1a', b: '2b'}
Data Last
R.mapValues(fn)(object);
R.pipe(
  { a: 1, b: 2 },
  R.mapValues((value, key) => value + key),
); // => {a: '1a', b: '2b'}

Merges two objects into one by combining their properties, effectively creating a new object that incorporates elements from both. The merge operation prioritizes the second object's properties, allowing them to overwrite those from the first object with the same names.

Equivalent to { ...data, ...source }.

Data First
R.merge(data, source);
R.merge({ x: 1, y: 2 }, { y: 10, z: 2 }); // => { x: 1, y: 10, z: 2 }
Data Last
R.merge(source)(data);
R.pipe({ x: 1, y: 2 }, R.merge({ y: 10, z: 2 })); // => { x: 1, y: 10, z: 2 }

Merges the source object into the destination object. The merge is similar to performing { ...destination, ... source } (where disjoint values from each object would be copied as-is, and for any overlapping props the value from source would be used); But for each prop (p), if both destination and source have a plain-object as a value, the value would be taken as the result of recursively deepMerging them (result.p === deepMerge(destination.p, source.p)).

Data First
R.mergeDeep(destination, source);
R.mergeDeep({ foo: "bar", x: 1 }, { foo: "baz", y: 2 }); // => { foo: 'baz', x: 1, y: 2 }
Data Last
R.mergeDeep(source)(destination);
R.pipe({ foo: "bar", x: 1 }, R.mergeDeep({ foo: "baz", y: 2 })); // => { foo: 'baz', x: 1, y: 2 }

Creates an object containing a single key:value pair.

R.objOf(value, key);
R.objOf(10, "a"); // => { a: 10 }
R.objOf(key)(value);
R.pipe(10, R.objOf("a")); // => { a: 10 }

Returns a partial copy of an object omitting the keys specified.

Breaking changes in v2
Data Last
R.omit(names)(obj);
R.pipe({ a: 1, b: 2, c: 3, d: 4 }, R.omit(["a", "d"])); // => { b: 2, c: 3 }
Data First
R.omit(obj, names);
R.omit({ a: 1, b: 2, c: 3, d: 4 }, ["a", "d"]); // => { b: 2, c: 3 }

Returns a partial copy of an object omitting the keys matching predicate.

Data First
R.omitBy(object, fn);
R.omitBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {a: 1, b: 2}
Data Last
R.omitBy(fn)(object);
R.omitBy((val, key) => key.toUpperCase() === key)({ a: 1, b: 2, A: 3, B: 4 }); // => {a: 1, b: 2}

Gets the value at path of object. If the resolved value is null or undefined, the defaultValue is returned in its place.

Data First
R.pathOr(object, array, defaultValue);
R.pathOr({ x: 10 }, ["y"], 2); // 2
R.pathOr({ y: 10 }, ["y"], 2); // 10
Data Last
R.pathOr(array, defaultValue)(object);
R.pipe({ x: 10 }, R.pathOr(["y"], 2)); // 2
R.pipe({ y: 10 }, R.pathOr(["y"], 2)); // 10

Creates an object composed of the picked object properties.

Data Last
R.pick([prop1, prop2])(object);
R.pipe({ a: 1, b: 2, c: 3, d: 4 }, R.pick(["a", "d"])); // => { a: 1, d: 4 }
Data First
R.pick(object, [prop1, prop2]);
R.pick({ a: 1, b: 2, c: 3, d: 4 }, ["a", "d"]); // => { a: 1, d: 4 }

Creates an object composed of the picked object properties.

Data First
R.pickBy(object, fn);
R.pickBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {A: 3, B: 4}
Data Last
R.pickBy(fn)(object);
R.pickBy((val, key) => key.toUpperCase() === key)({ a: 1, b: 2, A: 3, B: 4 }); // => {A: 3, B: 4}

Gets the value of the given property.

Data Last
R.prop(prop)(object);
R.pipe({ foo: "bar" }, R.prop("foo")); // => 'bar'

pullObject

View source on GitHub

Creates an object that maps the result of valueExtractor with a key resulting from running keyExtractor on each item in data. Duplicate keys are overwritten, guaranteeing that the extractor functions are run on each item in data.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • indexBy - Builds an object from an array of values and a mapper for keys.
  • fromEntries - Builds an object from an array of key-value pairs.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.pullObject(data, keyExtractor, valueExtractor);
R.pullObject(
  [
    { name: "john", email: "john@remedajs.com" },
    { name: "jane", email: "jane@remedajs.com" },
  ],
  R.prop("name"),
  R.prop("email"),
); // => { john: "john@remedajs.com", jane: "jane@remedajs.com" }
Data Last
R.pullObject(keyExtractor, valueExtractor)(data);
R.pipe(
  [
    { name: "john", email: "john@remedajs.com" },
    { name: "jane", email: "jane@remedajs.com" },
  ],
  R.pullObject(R.prop("email"), R.prop("name")),
); // => { john: "john@remedajs.com", jane: "jane@remedajs.com" }

Sets the value at prop of object.

Data First
R.set(obj, prop, value);
R.set({ a: 1 }, "a", 2); // => { a: 2 }
Data Last
R.set(prop, value)(obj);
R.pipe({ a: 1 }, R.set("a", 2)); // => { a: 2 }

Sets the value at path of object.

Data First
R.setPath(obj, path, value);
R.setPath({ a: { b: 1 } }, ["a", "b"], 2); // => { a: { b: 2 } }
Data Last
R.setPath(path, value)(obj);
R.pipe({ a: { b: 1 } }, R.setPath(["a", "b"], 2)); // { a: { b: 2 } }

Swaps the positions of two properties in an object based on the provided keys.

Data First
swap(data, key1, key2);
swap({ a: 1, b: 2, c: 3 }, "a", "b"); // => {a: 2, b: 1, c: 3}
Data Last
swap(key1, key2)(data);
swap("a", "b")({ a: 1, b: 2, c: 3 }); // => {a: 2, b: 1, c: 3}

uniqueWith

View source on GitHub

Returns a new array containing only one copy of each element in the original list. Elements are compared by custom comparator isEquals.

Data First
R.uniqueWith(array, isEquals);
R.uniqueWith(
  [{ a: 1 }, { a: 2 }, { a: 2 }, { a: 5 }, { a: 1 }, { a: 6 }, { a: 7 }],
  R.equals,
); // => [{a: 1}, {a: 2}, {a: 5}, {a: 6}, {a: 7}]
Data Last
R.uniqueWith(isEquals)(array);
R.uniqueWith(R.equals)([
  { a: 1 },
  { a: 2 },
  { a: 2 },
  { a: 5 },
  { a: 1 },
  { a: 6 },
  { a: 7 },
]); // => [{a: 1}, {a: 2}, {a: 5}, {a: 6}, {a: 7}]
R.pipe(
  [{ a: 1 }, { a: 2 }, { a: 2 }, { a: 5 }, { a: 1 }, { a: 6 }, { a: 7 }], // only 4 iterations
  R.uniqueWith(R.equals),
  R.take(3),
); // => [{a: 1}, {a: 2}, {a: 5}]

values

Lazy
View source on GitHub

Returns a new array containing the values of the array or object.

Breaking changes in v2
Data First
R.values(source);
R.values(["x", "y", "z"]); // => ['x', 'y', 'z']
R.values({ a: "x", b: "y", c: "z" }); // => ['x', 'y', 'z']
R.pipe(["x", "y", "z"], R.values); // => ['x', 'y', 'z']
R.pipe({ a: "x", b: "y", c: "z" }, R.values); // => ['x', 'y', 'z']
R.pipe({ a: "x", b: "y", c: "z" }, R.values, R.first); // => 'x'

Determines whether all predicates returns true for the input data.

Data First
R.allPass(data, fns);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.allPass(12, fns); // => true
R.allPass(8, fns); // => false
Data Last
R.allPass(fns)(data);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.allPass(fns)(12); // => true
R.allPass(fns)(8); // => false

Determines whether any predicate returns true for the input data.

Data First
R.anyPass(data, fns);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.anyPass(8, fns); // => true
R.anyPass(11, fns); // => false
Data Last
R.anyPass(fns)(data);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.anyPass(fns)(8); // => true
R.anyPass(fns)(11); // => false

Split an array into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements.

Data First
R.chunk(array, size);
R.chunk(["a", "b", "c", "d"], 2); // => [['a', 'b'], ['c', 'd']]
R.chunk(["a", "b", "c", "d"], 3); // => [['a', 'b', 'c'], ['d']]
Data Last
R.chunk(size)(array);
R.chunk(2)(["a", "b", "c", "d"]); // => [['a', 'b'], ['c', 'd']]
R.chunk(3)(["a", "b", "c", "d"]); // => [['a', 'b', 'c'], ['d']]

Combines two arrays.

Breaking changes in v2
Data First
R.concat(arr1, arr2);
R.concat([1, 2, 3], ["a"]); // [1, 2, 3, 'a']
Data Last
R.concat(arr2)(arr1);
R.concat(["a"])([1, 2, 3]); // [1, 2, 3, 'a']

difference

Lazy
View source on GitHub

Excludes the values from other array. The output maintains the same order as the input. If either array or other contain multiple items with the same values, all occurrences of those values will be removed. If the exact number of copies should be observed (i.e. multi-set semantics), use R.difference.multiset instead. If the arrays don't contain duplicates, both implementations yield the same result.

! DEPRECATED: Use R.difference.multiset(data, other) (or R.filter(data, R.isNot(R.isIncludedIn(other))) to keep the current runtime logic). R.difference.multiset will replace R.difference in v2!

Breaking changes in v2
Data First
R.difference(data, other);
R.difference.multiset(data, other);
R.difference([1, 2, 3, 4], [2, 5, 3]); // => [1, 4]
R.difference([1, 1, 2, 2], [1]); // => [2, 2]
R.difference.multiset([1, 1, 2, 2], [1]); // => [1, 2, 2]
Data First
R.difference(other)(data);
R.difference.multiset(other)(data);
R.pipe([1, 2, 3, 4], R.difference([2, 5, 3])); // => [1, 4]
R.pipe([1, 1, 2, 2], R.difference([1])); // => [2, 2]
R.pipe([1, 1, 2, 2], R.difference.multiset([1])); // => [1, 2, 2]

differenceWith

Lazy
View source on GitHub

Excludes the values from other array. Elements are compared by custom comparator isEquals.

Data First
R.differenceWith(array, other, isEquals);
R.differenceWith(
  [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 4 }],
  [{ a: 2 }, { a: 5 }, { a: 3 }],
  R.equals,
); // => [{a: 1}, {a: 4}]
Data Last
R.differenceWith(other, isEquals)(array);
R.differenceWith(
  [{ a: 2 }, { a: 5 }, { a: 3 }],
  R.equals,
)([{ a: 1 }, { a: 2 }, { a: 3 }, { a: 4 }]); // => [{a: 1}, {a: 4}]
R.pipe(
  [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 4 }, { a: 5 }, { a: 6 }], // only 4 iterations
  R.differenceWith([{ a: 2 }, { a: 3 }], R.equals),
  R.take(2),
); // => [{a: 1}, {a: 4}]

Removes first n elements from the array.

Data First
R.drop(array, n);
R.drop([1, 2, 3, 4, 5], 2); // => [3, 4, 5]
Data Last
R.drop(n)(array);
R.drop(2)([1, 2, 3, 4, 5]); // => [3, 4, 5]

dropFirstBy

View source on GitHub

Drop the first n items from data based on the provided ordering criteria. This allows you to avoid sorting the array before dropping the items. The complexity of this function is O(Nlogn) where N is the length of the array.

For the opposite operation (to keep n elements) see takeFirstBy.

Data First
R.dropFirstBy(data, n, ...rules);
R.dropFirstBy(["aa", "aaaa", "a", "aaa"], 2, (x) => x.length); // => ['aaa', 'aaaa']
Data Last
R.dropFirstBy(n, ...rules)(data);
R.pipe(
  ["aa", "aaaa", "a", "aaa"],
  R.dropFirstBy(2, (x) => x.length),
); // => ['aaa', 'aaaa']

Removes last n elements from the array.

Data First
R.dropLast(array, n);
R.dropLast([1, 2, 3, 4, 5], 2); // => [1, 2, 3]
Data Last
R.dropLast(n)(array);
R.dropLast(2)([1, 2, 3, 4, 5]); // => [1, 2, 3]

dropLastWhile

View source on GitHub

Removes elements from the end of the array until the predicate returns false.

The predicate is applied to each element in the array starting from the end and moving towards the beginning, until the predicate returns false. The returned array includes elements from the beginning of the array, up to and including the element that produced false for the predicate.

Data First
R.dropLastWhile(data, predicate);
R.dropLastWhile([1, 2, 10, 3, 4], (x) => x < 10); // => [1, 2, 10]
Data Last
R.dropLastWhile(predicate)(data);
R.pipe(
  [1, 2, 10, 3, 4],
  R.dropLastWhile((x) => x < 10),
); // => [1, 2, 10]

Removes elements from the beginning of the array until the predicate returns false.

The predicate is applied to each element in the array, until the predicate returns false. The returned array includes the rest of the elements, starting with the element that produced false for the predicate.

Data First
R.dropWhile(data, predicate);
R.dropWhile([1, 2, 10, 3, 4], (x) => x < 10); // => [10, 3, 4]
Data Last
R.dropWhile(predicate)(data);
R.pipe(
  [1, 2, 10, 3, 4],
  R.dropWhile((x) => x < 10),
); // => [10, 3, 4]

filter

Indexed
Lazy
View source on GitHub

Filter the elements of an array that meet the condition specified in a callback function.

Breaking changes in v2
Data First
R.filter(array, fn);
R.filter.indexed(array, fn);
R.filter([1, 2, 3], (x) => x % 2 === 1); // => [1, 3]
R.filter.indexed([1, 2, 3], (x, i, array) => x % 2 === 1); // => [1, 3]
Data Last
R.filter(fn)(array);
R.filter.indexed(fn)(array);
R.pipe(
  [1, 2, 3],
  R.filter((x) => x % 2 === 1),
); // => [1, 3]
R.pipe(
  [1, 2, 3],
  R.filter.indexed((x, i) => x % 2 === 1),
); // => [1, 3]

find

Indexed
Lazy
View source on GitHub

Returns the value of the first element in the array where predicate is true, and undefined otherwise.

Breaking changes in v2
Data First
R.find(items, fn);
R.find.indexed(items, fn);
R.find([1, 3, 4, 6], (n) => n % 2 === 0); // => 4
R.find.indexed([1, 3, 4, 6], (n, i) => n % 2 === 0); // => 4
Data Last
R.find(fn)(items);
R.find.indexed(fn)(items);
R.pipe(
  [1, 3, 4, 6],
  R.find((n) => n % 2 === 0),
); // => 4
R.pipe(
  [1, 3, 4, 6],
  R.find.indexed((n, i) => n % 2 === 0),
); // => 4

findIndex

Indexed
Lazy
View source on GitHub

Returns the index of the first element in the array where predicate is true, and -1 otherwise.

Data First
R.findIndex(items, fn);
R.findIndex.indexed(items, fn);
R.findIndex([1, 3, 4, 6], (n) => n % 2 === 0); // => 2
R.findIndex.indexed([1, 3, 4, 6], (n, i) => n % 2 === 0); // => 2
Data Last
R.findIndex(fn)(items);
R.findIndex.indexed(fn)(items);
R.pipe(
  [1, 3, 4, 6],
  R.findIndex((n) => n % 2 === 0),
); // => 2
R.pipe(
  [1, 3, 4, 6],
  R.findIndex.indexed((n, i) => n % 2 === 0),
); // => 2

findLast

Indexed
Lazy
View source on GitHub

Returns the value of the last element in the array where predicate is true, and undefined otherwise.

Data First
R.findLast(items, fn);
R.findLast.indexed(items, fn);
R.findLast([1, 3, 4, 6], (n) => n % 2 === 1); // => 3
R.findLast.indexed([1, 3, 4, 6], (n, i) => n % 2 === 1); // => 3
Data Last
R.findLast(fn)(items);
R.findLast.indexed(fn)(items);
R.pipe(
  [1, 3, 4, 6],
  R.findLast((n) => n % 2 === 1),
); // => 3
R.pipe(
  [1, 3, 4, 6],
  R.findLast.indexed((n, i) => n % 2 === 1),
); // => 3

findLastIndex

Indexed
Lazy
View source on GitHub

Returns the index of the last element in the array where predicate is true, and -1 otherwise.

Data First
R.findLastIndex(items, fn);
R.findLastIndex.indexed(items, fn);
R.findLastIndex([1, 3, 4, 6], (n) => n % 2 === 1); // => 1
R.findLastIndex.indexed([1, 3, 4, 6], (n, i) => n % 2 === 1); // => 1
Data Last
R.findLastIndex(fn)(items);
R.findLastIndex.indexed(fn)(items);
R.pipe(
  [1, 3, 4, 6],
  R.findLastIndex((n) => n % 2 === 1),
); // => 1
R.pipe(
  [1, 3, 4, 6],
  R.findLastIndex.indexed((n, i) => n % 2 === 1),
); // => 1

Gets the first element of array.

Data First
R.first(array);
R.first([1, 2, 3]); // => 1
R.first([]); // => undefined
Data Last
R.first()(array);
R.pipe(
  [1, 2, 4, 8, 16],
  R.filter((x) => x > 3),
  R.first(),
  (x) => x + 1,
); // => 5

Find the first element in the array that adheres to the order rules provided. This is a superset of what a typical maxBy or minBy function would do as it allows defining "tie-breaker" rules when values are equal, and allows comparing items using any logic. This function is equivalent to calling R.first(R.sortBy(...)) but runs at O(n) instead of O(nlogn).

Use nthBy if you need an element other that the first, or takeFirstBy if you more than just the first element.

Data Last
R.firstBy(...rules)(data);
const max = R.pipe([1, 2, 3], R.firstBy([R.identity, "desc"])); // => 3;
const min = R.pipe([1, 2, 3], R.firstBy(R.identity)); // => 1;

const data = [{ a: "a" }, { a: "aa" }, { a: "aaa" }] as const;
const maxBy = R.pipe(data, R.firstBy([(item) => item.a.length, "desc"])); // => { a: "aaa" };
const minBy = R.pipe(
  data,
  R.firstBy((item) => item.a.length),
); // => { a: "a" };

const data = [
  { type: "cat", size: 1 },
  { type: "cat", size: 2 },
  { type: "dog", size: 3 },
] as const;
const multi = R.pipe(data, R.firstBy(R.prop("type"), [R.prop("size"), "desc"])); // => {type: "cat", size: 2}
Data First
R.firstBy(data, ...rules);
const max = R.firstBy([1, 2, 3], [R.identity, "desc"]); // => 3;
const min = R.firstBy([1, 2, 3], R.identity); // => 1;

const data = [{ a: "a" }, { a: "aa" }, { a: "aaa" }] as const;
const maxBy = R.firstBy(data, [(item) => item.a.length, "desc"]); // => { a: "aaa" };
const minBy = R.firstBy(data, (item) => item.a.length); // => { a: "a" };

const data = [
  { type: "cat", size: 1 },
  { type: "cat", size: 2 },
  { type: "dog", size: 3 },
] as const;
const multi = R.firstBy(data, R.prop("type"), [R.prop("size"), "desc"]); // => {type: "cat", size: 2}

Creates a new array with all sub-array elements concatenated into it recursively up to the specified depth. Equivalent to the built-in Array.prototype.flat method.

Data First
R.flat(data);
R.flat(data, depth);
R.flat([[1, 2], [3, 4], [5], [[6]]]); // => [1, 2, 3, 4, 5, [6]]
R.flat([[[1]], [[2]]], 2); // => [1, 2]
Data Last
R.flat()(data);
R.flat(depth)(data);
R.pipe([[1, 2], [3, 4], [5], [[6]]], R.flat()); // => [1, 2, 3, 4, 5, [6]]
R.pipe([[[1]], [[2]]], R.flat(2)); // => [1, 2]

flatMap

Lazy
View source on GitHub

Map each element of an array using a defined callback function and flatten the mapped result.

Data First
R.flatMap(array, fn);
R.flatMap([1, 2, 3], (x) => [x, x * 10]); // => [1, 10, 2, 20, 3, 30]
Data Last
R.flatMap(fn)(array);
R.pipe(
  [1, 2, 3],
  R.flatMap((x) => [x, x * 10]),
); // => [1, 10, 2, 20, 3, 30]

forEach

Indexed
Lazy
View source on GitHub

Iterate an array using a defined callback function. The original array is returned instead of void.

Data First
R.forEach(array, fn);
R.forEach.indexed(array, fn);
R.forEach([1, 2, 3], (x) => {
  console.log(x);
}); // => [1, 2, 3]
R.forEach.indexed([1, 2, 3], (x, i) => {
  console.log(x, i);
}); // => [1, 2, 3]
Data Last
R.forEach(fn)(array);
R.forEach.indexed(fn)(array);
R.pipe(
  [1, 2, 3],
  R.forEach((x) => {
    console.log(x);
  }),
); // => [1, 2, 3]
R.pipe(
  [1, 2, 3],
  R.forEach.indexed((x, i) => {
    console.log(x, i);
  }),
); // => [1, 2, 3]

groupBy

Strict
Indexed
View source on GitHub

Splits a collection into sets, grouped by the result of running each value through fn.

Data First
R.groupBy(array, fn);
R.groupBy.strict(array, fn);
R.groupBy(["one", "two", "three"], (x) => x.length); // => {3: ['one', 'two'], 5: ['three']}
R.groupBy.strict([{ a: "cat" }, { a: "dog" }] as const, prop("a")); // => {cat: [{a: 'cat'}], dog: [{a: 'dog'}]} typed Partial<Record<'cat' | 'dog', NonEmptyArray<{a: 'cat' | 'dog'}>>>
R.groupBy([0, 1], (x) => (x % 2 === 0 ? "even" : undefined)); // => {even: [0]}
Data Last
R.groupBy(fn)(array);
R.pipe(
  ["one", "two", "three"],
  R.groupBy((x) => x.length),
); // => {3: ['one', 'two'], 5: ['three']}

Checks if the given array has at least the defined number of elements. When the minimum used is a literal (e.g. 3) the output is refined accordingly so that those indices are defined when accessing the array even when using typescript's 'noUncheckedIndexAccess'.

Data First
R.hasAtLeast(data, minimum);
R.hasAtLeast([], 4); // => false

const data: number[] = [1, 2, 3, 4];
R.hasAtLeast(data, 1); // => true
data[0]; // 1, with type `number`
Data Last
R.hasAtLeast(minimum)(data);
R.pipe([], R.hasAtLeast(4)); // => false

const data = [[1, 2], [3], [4, 5]];
R.pipe(
  data,
  R.filter(R.hasAtLeast(2)),
  R.map(([, second]) => second),
); // => [2,5], with type `number[]`

indexBy

Strict
Indexed
View source on GitHub

Converts a list of objects into an object indexing the objects by the given key (casted to a string). Use the strict version to maintain the given key's type, so long as it is a valid PropertyKey.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • fromEntries - Builds an object from an array of key-value pairs.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.indexBy(array, fn);
R.indexBy.strict(array, fn);
R.indexBy(["one", "two", "three"], (x) => x.length); // => {"3": 'two', "5": 'three'}
R.indexBy.strict(["one", "two", "three"], (x) => x.length); // => {3: 'two', 5: 'three'}
Data Last
R.indexBy(fn)(array);
R.indexBy.strict(fn)(array);
R.pipe(
  ["one", "two", "three"],
  R.indexBy((x) => x.length),
); // => {"3": 'two', "5": 'three'}
R.pipe(
  ["one", "two", "three"],
  R.indexBy.strict((x) => x.length),
); // => {3: 'two', 5: 'three'}

intersection

Lazy
View source on GitHub

Returns a list of elements that exist in both array. The output maintains the same order as the input. If either array or other contain multiple items with the same values, all occurrences of those values will be present. If the exact number of copies should be observed (i.e. multi-set semantics), use R.intersection.multiset instead. If the arrays don't contain duplicates, both implementations yield the same result.

! DEPRECATED: Use R.intersection.multiset(data, other) (or R.filter(data, R.isIncludedIn(other)) to keep the current runtime logic). R.intersection.multiset will replace R.intersection in v2!

Breaking changes in v2
Data First
R.intersection(data, other);
R.intersection.multiset(data, other);
R.intersection([1, 2, 3], [2, 3, 5]); // => [2, 3]
R.intersection([1, 1, 2, 2], [1]); // => [1, 1]
R.intersection.multiset([1, 1, 2, 2], [1]); // => [1]
Data First
R.intersection(other)(data);
R.intersection.multiset(other)(data);
R.pipe([1, 2, 3], R.intersection([2, 3, 5])); // => [2, 3]
R.pipe([1, 1, 2, 2], R.intersection([1])); // => [1, 1]
R.pipe([1, 1, 2, 2], R.intersection.multiset([1])); // => [1]

intersectionWith

Lazy
View source on GitHub

Returns a list of intersecting values based on a custom comparator function that compares elements of both arrays.

Data First
R.intersectionWith(array, other, comparator);
R.intersectionWith(
  [
    { id: 1, name: "Ryan" },
    { id: 3, name: "Emma" },
  ],
  [3, 5],
  (a, b) => a.id === b,
); // => [{ id: 3, name: 'Emma' }]
Data Last
R.intersectionWith(other, comparator)(array);
R.intersectionWith(
  [3, 5],
  (a, b) => a.id === b,
)([
  { id: 1, name: "Ryan" },
  { id: 3, name: "Emma" },
]); // => [{ id: 3, name: 'Emma' }]

Joins the elements of the array by: casting them to a string and concatenating them one to the other, with the provided glue string in between every two elements.

When called on a tuple and with stricter item types (union of literal values, the result is strictly typed to the tuples shape and it's item types).

Data First
R.join(data, glue);
R.join([1, 2, 3], ","); // => "1,2,3" (typed `string`)
R.join(["a", "b", "c"], ""); // => "abc" (typed `string`)
R.join(["hello", "world"] as const, " "); // => "hello world" (typed `hello world`)
Data Last
R.join(glue)(data);
R.pipe([1, 2, 3], R.join(",")); // => "1,2,3" (typed `string`)
R.pipe(["a", "b", "c"], R.join("")); // => "abc" (typed `string`)
R.pipe(["hello", "world"] as const, R.join(" ")); // => "hello world" (typed `hello world`)

Gets the last element of array.

Data First
R.last(array);
R.last([1, 2, 3]); // => 3
R.last([]); // => undefined
Data Last
R.last()(array);
R.pipe(
  [1, 2, 4, 8, 16],
  R.filter((x) => x > 3),
  R.last(),
  (x) => x + 1,
); // => 17

Counts values of the collection or iterable.

Data First
R.length(array);
R.length([1, 2, 3]); // => 3
Data Last
R.length()(array);
R.pipe([1, 2, 3], R.length()); // => 3

map

Strict
Indexed
Lazy
View source on GitHub

Map each element of an array using a defined callback function. If the input array is a tuple use the strict variant to maintain it's shape.

Breaking changes in v2
Data First
R.map(array, fn);
R.map.indexed(array, fn);
R.map.strict(array, fn);
R.map.strict.indexed(array, fn);
R.map([1, 2, 3], (x) => x * 2); // => [2, 4, 6], typed number[]
R.map.indexed([0, 0, 0], (x, i) => i); // => [0, 1, 2], typed number[]
R.map.strict([0, 0] as const, (x) => x + 1); // => [1, 1], typed [number, number]
R.map.strict.indexed([0, 0] as const, (x, i) => x + i); // => [0, 1], typed [number, number]
Data Last
R.map(fn)(array);
R.map.indexed(fn)(array);
R.pipe(
  [0, 1, 2],
  R.map((x) => x * 2),
); // => [0, 2, 4]
R.pipe(
  [0, 0, 0],
  R.map.indexed((x, i) => i),
); // => [0, 1, 2]

mapToObj

Indexed
View source on GitHub

Map each element of an array into an object using a defined callback function.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • indexBy - Builds an object from an array of values and a mapper for keys.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • fromEntries - Builds an object from an array of key-value pairs. Refer to the docs for more details.
Data First
R.mapToObj(array, fn);
R.mapToObj.indexed(array, fn);
R.mapToObj([1, 2, 3], (x) => [String(x), x * 2]); // => {1: 2, 2: 4, 3: 6}
R.mapToObj.indexed([0, 0, 0], (x, i) => [i, i]); // => {0: 0, 1: 1, 2: 2}
Data Last
R.mapToObj(fn)(array);
R.mapToObj.indexed(fn)(array);
R.pipe(
  [1, 2, 3],
  R.mapToObj((x) => [String(x), x * 2]),
); // => {1: 2, 2: 4, 3: 6}
R.pipe(
  [0, 0, 0],
  R.mapToObj.indexed((x, i) => [i, i]),
); // => {0: 0, 1: 1, 2: 2}

mapWithFeedback

Indexed
Lazy
View source on GitHub

Applies a function on each element of the array, using the result of the previous application, and returns an array of the successively computed values.

Data First
R.mapWithFeedback(items, fn, initialValue);
R.mapWithFeedback.indexed(items, fn, initialValue);
R.mapWithFeedback([1, 2, 3, 4, 5], (prev, x) => prev + x, 100); // => [101, 103, 106, 110, 115]
R.mapWithFeedback.indexed(
  [1, 2, 3, 4, 5],
  (prev, x, i, array) => prev + x,
  100,
); // => [101, 103, 106, 110, 115]
Data Last
R.mapWithFeedback(fn, initialValue)(array);
R.pipe(
  [1, 2, 3, 4, 5],
  R.mapWithFeedback((prev, x) => prev + x, 100),
); // => [101, 103, 106, 110, 115]
R.pipe(
  [1, 2, 3, 4, 5],
  R.mapWithFeedback.indexed((prev, x, i, array) => prev + x, 100),
); // => [101, 103, 106, 110, 115]

meanBy

Indexed
View source on GitHub

Returns the mean of the elements of an array using the provided predicate.

Data Last
R.meanBy(fn)(array);
R.meanBy.indexed(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.meanBy((x) => x.a),
); // 3
Data First
R.meanBy(array, fn);
R.meanBy.indexed(array, fn);
R.meanBy([{ a: 5 }, { a: 1 }, { a: 3 }], (x) => x.a); // 3

Merges a list of objects into a single object.

R.mergeAll(objects);
R.mergeAll([{ a: 1, b: 1 }, { b: 2, c: 3 }, { d: 10 }]); // => { a: 1, b: 2, c: 3, d: 10 }

Retrieves the element that would be at the given index if the array were sorted according to specified rules. This function uses the QuickSelect algorithm running at an average complexity of O(n). Semantically it is equivalent to sortBy(data, ...rules).at(index) which would run at O(nlogn).

See also firstBy which provides an even more efficient algorithm and a stricter return type, but only for index === 0. See takeFirstBy to get all the elements up to and including index.

Data First
R.nthBy(data, index, ...rules);
R.nthBy([2, 1, 4, 5, 3], 2, identity); // => 3
Data Last
R.nthBy(index, ...rules)(data);
R.pipe([2, 1, 4, 5, 3], R.nthBy(2, identity)); // => 3

Returns the first and only element of array, or undefined otherwise.

Data First
R.only(array);
R.only([]); // => undefined
R.only([1]); // => 1
R.only([1, 2]); // => undefined
Data Last
R.only()(array);
R.pipe([], R.only()); // => undefined
R.pipe([1], R.only()); // => 1
R.pipe([1, 2], R.only()); // => undefined

partition

Indexed
View source on GitHub

Splits a collection into two groups, the first of which contains elements the predicate type guard passes, and the second one containing the rest.

Breaking changes in v2
Data First
R.partition(array, fn);
R.partition(["one", "two", "forty two"], (x) => x.length === 3); // => [['one', 'two'], ['forty two']]
Data First
R.partition(array, fn);
R.partition(["one", "two", "forty two"], (x) => x.length === 3); // => [['one', 'two'], ['forty two']]
Data Last
R.partition(fn)(array);
R.pipe(
  ["one", "two", "forty two"],
  R.partition((x) => x.length === 3),
); // => [['one', 'two'], ['forty two']]
Data Last
R.partition(fn)(array);
R.pipe(
  ["one", "two", "forty two"],
  R.partition((x) => x.length === 3),
); // => [['one', 'two'], ['forty two']]

Returns a list of numbers from start (inclusive) to end (exclusive).

Data First
range(start, end);
R.range(1, 5); // => [1, 2, 3, 4]
Data First
range(end)(start);
R.range(5)(1); // => [1, 2, 3, 4]

Calculates the rank of an item in an array based on rules. The rank is the position where the item would appear in the sorted array. This function provides an efficient way to determine the rank in O(n) time, compared to O(nlogn) for the equivalent sortedIndex(sortBy(data, ...rules), item).

Data First
R.rankBy(data, item, ...rules);
const DATA = [{ a: 5 }, { a: 1 }, { a: 3 }] as const;
R.rankBy(DATA, 0, R.prop("a")); // => 0
R.rankBy(DATA, 1, R.prop("a")); // => 1
R.rankBy(DATA, 2, R.prop("a")); // => 1
R.rankBy(DATA, 3, R.prop("a")); // => 2
Data Last
R.rankBy(item, ...rules)(data);
const DATA = [{ a: 5 }, { a: 1 }, { a: 3 }] as const;
R.pipe(DATA, R.rankBy(0, R.prop("a"))); // => 0
R.pipe(DATA, R.rankBy(1, R.prop("a"))); // => 1
R.pipe(DATA, R.rankBy(2, R.prop("a"))); // => 1
R.pipe(DATA, R.rankBy(3, R.prop("a"))); // => 2

reduce

Indexed
View source on GitHub

Calls the specified callback function for all the elements in an array. The return value of the callback function is the accumulated result, and is provided as an argument in the next call to the callback function.

Breaking changes in v2
Data First
R.reduce(items, fn, initialValue);
R.reduce.indexed(items, fn, initialValue);
R.reduce([1, 2, 3, 4, 5], (acc, x) => acc + x, 100); // => 115
R.reduce.indexed([1, 2, 3, 4, 5], (acc, x, i, array) => acc + x, 100); // => 115
Data Last
R.reduce(fn, initialValue)(array);
R.pipe(
  [1, 2, 3, 4, 5],
  R.reduce((acc, x) => acc + x, 100),
); // => 115
R.pipe(
  [1, 2, 3, 4, 5],
  R.reduce.indexed((acc, x, i, array) => acc + x, 100),
); // => 115

Reverses array.

Data First
R.reverse(arr);
R.reverse([1, 2, 3]); // [3, 2, 1]
Data Last
R.reverse()(array);
R.reverse()([1, 2, 3]); // [3, 2, 1]

Returns a random subset of size sampleSize from array.

Maintains and infers most of the typing information that could be passed along to the output. This means that when using tuples, the output will be a tuple too, and when using literals, those literals would be preserved.

The items in the result are kept in the same order as they are in the input. If you need to get a shuffled response you can pipe the shuffle function after this one.

Breaking changes in v2
Data First
R.sample(array, sampleSize);
R.sample(["hello", "world"], 1); // => ["hello"] // typed string[]
R.sample(["hello", "world"] as const, 1); // => ["world"] // typed ["hello" | "world"]
Data Last
R.sample(sampleSize)(array);
R.sample(1)(["hello", "world"]); // => ["hello"] // typed string[]
R.sample(1)(["hello", "world"] as const); // => ["world"] // typed ["hello" | "world"]

Shuffles the input array, returning a new array with the same elements in a random order.

Data First
R.shuffle(array);
R.shuffle([4, 2, 7, 5]); // => [7, 5, 4, 2]
Data Last
R.shuffle()(array);
R.pipe([4, 2, 7, 5], R.shuffle()); // => [7, 5, 4, 2]

Sorts an array. The comparator function should accept two values at a time and return a negative number if the first value is smaller, a positive number if it's larger, and zero if they are equal. Sorting is based on a native sort function. It's not guaranteed to be stable.

If the input array is more complex (non-empty array, tuple, etc...) use the strict mode to maintain its shape.

Breaking changes in v2
Data First
R.sort(items, cmp);
R.sort.strict(items, cmp);
R.sort([4, 2, 7, 5], (a, b) => a - b); // => [2, 4, 5, 7] typed Array<number>
R.sort.strict([4, 2] as [number, number], (a, b) => a - b); // [2, 4] typed [number, number]
Data Last
R.sort(cmp)(items);
R.sort.strict(cmp)(items);
R.pipe(
  [4, 2, 7, 5],
  R.sort((a, b) => a - b),
); // => [2, 4, 5, 7] typed Array<number>
R.pipe(
  [4, 2] as [number, number],
  R.sort.strict((a, b) => a - b),
); // => [2, 4] typed [number, number]

sortBy

Strict
View source on GitHub

Sorts data using the provided ordering rules. The sort is done via the native Array.prototype.sort but is performed on a shallow copy of the array to avoid mutating the original data.

To maintain the shape of more complex inputs (like non-empty arrays, tuples, etc...) use the strict variant.

There are several other functions that take order rules and bypass the need to sort the array first (in O(nlogn) time):

  • firstBy === first(sortBy(data, ...rules)), O(n).
  • takeFirstBy === take(sortBy(data, ...rules), k), O(nlogk).
  • dropFirstBy === drop(sortBy(data, ...rules), k), O(nlogk).
  • nthBy === sortBy(data, ...rules).at(k), O(n).
  • rankBy === sortedIndex(sortBy(data, ...rules), item), O(n). Refer to the docs for more details.
Data Last
R.sortBy(...rules)(data);
R.sortBy.strict(...rules)(data);
R.pipe(
  [{ a: 1 }, { a: 3 }, { a: 7 }, { a: 2 }],
  R.sortBy((x) => x.a),
); // => [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 7 }] typed Array<{a:number}>
R.pipe(
  [{ a: 1 }, { a: 3 }] as const,
  R.sortBy.strict((x) => x.a),
); // => [{ a: 1 }, { a: 3 }] typed [{a: 1 | 3}, {a: 1 | 3}]
Data First
R.sortBy(data, ...rules);
R.sortBy.strict(data, ...rules);
R.sortBy([{ a: 1 }, { a: 3 }, { a: 7 }, { a: 2 }], (x) => x.a);
// => [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 7 }] typed Array<{a:number}>

R.sortBy(
  [
    { color: "red", weight: 2 },
    { color: "blue", weight: 3 },
    { color: "green", weight: 1 },
    { color: "purple", weight: 1 },
  ],
  [(x) => x.weight, "asc"],
  (x) => x.color,
);
// =>
//   {color: 'green', weight: 1},
//   {color: 'purple', weight: 1},
//   {color: 'red', weight: 2},
//   {color: 'blue', weight: 3},
// typed Array<{color: string, weight: number}>

R.sortBy.strict([{ a: 1 }, { a: 3 }] as const, (x) => x.a);
// => [{ a: 1 }, { a: 3 }] typed [{a: 1 | 3}, {a: 1 | 3}]

sortedIndex

View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order; so that splice(sortedIndex, 0, item) would result in maintaining the array's sort-ness. The array can contain duplicates. If the item already exists in the array the index would be of the first occurrence of the item.

Runs in O(logN) time.

Data First
R.sortedIndex(data, item);
R.sortedIndex(["a", "a", "b", "c", "c"], "c"); // => 3
Data Last
R.sortedIndex(item)(data);
R.pipe(["a", "a", "b", "c", "c"], R.sortedIndex("c")); // => 3

sortedIndexBy

Indexed
View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order using a value function; so that splice(sortedIndex, 0, item) would result in maintaining the arrays sort-ness. The array can contain duplicates. If the item already exists in the array the index would be of the first occurrence of the item.

Runs in O(logN) time.

Data First
R.sortedIndexBy(data, item, valueFunction);
R.sortedIndexBy([{ age: 20 }, { age: 22 }], { age: 21 }, prop("age")); // => 1
Data Last
R.sortedIndexBy(data, item, valueFunction);
R.sortedIndexBy([{ age: 20 }, { age: 22 }], { age: 21 }, prop("age")); // => 1

sortedIndexWith

Indexed
View source on GitHub

Performs a binary search for the index of the item at which the predicate stops returning true. This function assumes that the array is "sorted" in regards to the predicate, meaning that running the predicate as a mapper on it would result in an array [...true[], ...false[]]. This stricter requirement from the predicate provides us 2 benefits over findIndex which does a similar thing:

  1. It would run at O(logN) time instead of O(N) time.
  2. It always returns a value (it would return data.length if the predicate returns true for all items).

This function is the basis for all other sortedIndex functions which search for a specific item in a sorted array, and it could be used to perform similar efficient searches.

Data First
R.sortedIndexWith(data, predicate);
R.sortedIndexWith(["a", "ab", "abc"], (item) => item.length < 2); // => 1
Data Last
R.sortedIndexWith(predicate)(data);
R.pipe(
  ["a", "ab", "abc"],
  R.sortedIndexWith((item) => item.length < 2),
); // => 1

sortedLastIndex

View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order; so that splice(sortedIndex, 0, item) would result in maintaining the array's sort-ness. The array can contain duplicates. If the item already exists in the array the index would be of the last occurrence of the item.

Runs in O(logN) time.

Data First
R.sortedLastIndex(data, item);
R.sortedLastIndex(["a", "a", "b", "c", "c"], "c"); // => 5
Data Last
R.sortedLastIndex(item)(data);
R.pipe(["a", "a", "b", "c", "c"], sortedLastIndex("c")); // => 5

sortedLastIndexBy

Indexed
View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order using a value function; so that splice(sortedIndex, 0, item) would result in maintaining the arrays sort-ness. The array can contain duplicates. If the item already exists in the array the index would be of the last occurrence of the item.

Runs in O(logN) time.

Data First
R.sortedLastIndexBy(data, item, valueFunction);
R.sortedLastIndexBy([{ age: 20 }, { age: 22 }], { age: 21 }, prop("age")); // => 1
Data Last
R.sortedLastIndexBy(item, valueFunction)(data);
R.pipe([{ age: 20 }, { age: 22 }], sortedLastIndexBy({ age: 21 }, prop("age"))); // => 1

Removes elements from an array and, inserts new elements in their place.

Data First
R.splice(items, start, deleteCount, replacement);
R.splice([1, 2, 3, 4, 5, 6, 7, 8], 2, 3, []); //=> [1,2,6,7,8]
R.splice([1, 2, 3, 4, 5, 6, 7, 8], 2, 3, [9, 10]); //=> [1,2,9,10,6,7,8]
Data Last
R.splice(start, deleteCount, replacement)(items);
R.pipe([1, 2, 3, 4, 5, 6, 7, 8], R.splice(2, 3, [])); // => [1,2,6,7,8]
R.pipe([1, 2, 3, 4, 5, 6, 7, 8], R.splice(2, 3, [9, 10])); // => [1,2,9,10,6,7,8]

Splits a given array at a given index.

Data First
R.splitAt(array, index);
R.splitAt([1, 2, 3], 1); // => [[1], [2, 3]]
R.splitAt([1, 2, 3, 4, 5], -1); // => [[1, 2, 3, 4], [5]]
Data Last
R.splitAt(index)(array);
R.splitAt(1)([1, 2, 3]); // => [[1], [2, 3]]
R.splitAt(-1)([1, 2, 3, 4, 5]); // => [[1, 2, 3, 4], [5]]

Splits a given array at the first index where the given predicate returns true.

Data First
R.splitWhen(array, fn);
R.splitWhen([1, 2, 3], (x) => x === 2); // => [[1], [2, 3]]
Data Last
R.splitWhen(fn)(array);
R.splitWhen((x) => x === 2)([1, 2, 3]); // => [[1], [2, 3]]

sumBy

Indexed
View source on GitHub

Returns the sum of the elements of an array using the provided predicate.

Data Last
R.sumBy(fn)(array);
R.sumBy.indexed(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.sumBy((x) => x.a),
); // 9
Data First
R.sumBy(array, fn);
R.sumBy.indexed(array, fn);
R.sumBy([{ a: 5 }, { a: 1 }, { a: 3 }], (x) => x.a); // 9

swapIndices

View source on GitHub

Swaps the positions of two elements in an array or string at the provided indices.

Negative indices are supported and would be treated as an offset from the end of the array. The resulting type thought would be less strict than when using positive indices.

If either index is out of bounds the result would be a shallow copy of the input, as-is.

Data First
swapIndices(data, index1, index2);
swapIndices(["a", "b", "c"], 0, 1); // => ['b', 'a', 'c']
swapIndices(["a", "b", "c"], 1, -1); // => ['c', 'b', 'a']
swapIndices("abc", 0, 1); // => 'bac'
Data Last
swapIndices(index1, index2)(data);
swapIndices(0, 1)(["a", "b", "c"]); // => ['b', 'a', 'c']
swapIndices(0, -1)("abc"); // => 'cba'

Returns the first n elements of array.

Data First
R.take(array, n);
R.take([1, 2, 3, 4, 3, 2, 1], 3); // => [1, 2, 3]
Data Last
R.take(n)(array);
R.pipe([1, 2, 3, 4, 3, 2, 1], R.take(n)); // => [1, 2, 3]

takeFirstBy

View source on GitHub

Take the first n items from data based on the provided ordering criteria. This allows you to avoid sorting the array before taking the items. The complexity of this function is O(Nlogn) where N is the length of the array.

For the opposite operation (to drop n elements) see dropFirstBy.

Data First
R.takeFirstBy(data, n, ...rules);
R.takeFirstBy(["aa", "aaaa", "a", "aaa"], 2, (x) => x.length); // => ['a', 'aa']
Data Last
R.takeFirstBy(n, ...rules)(data);
R.pipe(
  ["aa", "aaaa", "a", "aaa"],
  R.takeFirstBy(2, (x) => x.length),
); // => ['a', 'aa']

takeLastWhile

View source on GitHub

Returns elements from the end of the array until the predicate returns false. The returned elements will be in the same order as in the original array.

Data First
R.takeLastWhile(data, predicate);
R.takeLastWhile([1, 2, 10, 3, 4, 5], (x) => x < 10); // => [3, 4, 5]
Data Last
R.takeLastWhile(predicate)(data);
R.pipe(
  [1, 2, 10, 3, 4, 5],
  R.takeLastWhile((x) => x < 10),
); // => [3, 4, 5]

Returns elements from the array until predicate returns false.

Data First
R.takeWhile(array, fn);
R.takeWhile([1, 2, 3, 4, 3, 2, 1], (x) => x !== 4); // => [1, 2, 3]
Data Last
R.takeWhile(fn)(array);
R.pipe(
  [1, 2, 3, 4, 3, 2, 1],
  R.takeWhile((x) => x !== 4),
); // => [1, 2, 3]

Returns a new array containing only one copy of each element in the original list. Elements are compared by reference using Set.

Data First
R.unique(array);
R.unique([1, 2, 2, 5, 1, 6, 7]); // => [1, 2, 5, 6, 7]
Data Last
R.unique()(array);
R.pipe(
  [1, 2, 2, 5, 1, 6, 7], // only 4 iterations
  R.unique(),
  R.take(3),
); // => [1, 2, 5]

uniqueBy

Lazy
View source on GitHub

Returns a new array containing only one copy of each element in the original list transformed by a function. Elements are compared by reference using Set.

Data First
R.uniqueBy(array, fn);
R.uniqueBy(
  [{ n: 1 }, { n: 2 }, { n: 2 }, { n: 5 }, { n: 1 }, { n: 6 }, { n: 7 }],
  (obj) => obj.n,
); // => [{n: 1}, {n: 2}, {n: 5}, {n: 6}, {n: 7}]
Data Last
R.uniqueBy(fn)(array);
R.pipe(
  [{ n: 1 }, { n: 2 }, { n: 2 }, { n: 5 }, { n: 1 }, { n: 6 }, { n: 7 }], // only 4 iterations
  R.uniqueBy((obj) => obj.n),
  R.take(3),
); // => [{n: 1}, {n: 2}, {n: 5}]

Creates a new list from two supplied lists by pairing up equally-positioned items. The length of the returned list will match the shortest of the two inputs.

If the input array are tuples, you can use the strict option to get another tuple instead of a generic array type.

Breaking changes in v2
Data First
R.zip(first, second);
R.zip([1, 2], ["a", "b"]); // => [[1, 'a'], [2, 'b']] (type: [number, string][])
R.zip.strict([1, 2] as const, ["a", "b"] as const); // => [[1, 'a'], [2, 'b']]  (type: [[1, 'a'], [2, 'b']])
Data Last
R.zip(second)(first);
R.zip(["a", "b"])([1, 2]); // => [[1, 'a'], [2, 'b']] (type: [number, string][])
R.zip.strict(["a", "b"] as const)([1, 2] as const); // => [[1, 'a'], [2, 'b']]  (type: [[1, 'a'], [2, 'b']])

Creates a new list from two supplied lists by calling the supplied function with the same-positioned element from each list.

Data First
R.zipWith(first, second, fn);
R.zipWith(["1", "2", "3"], ["a", "b", "c"], (a, b) => a + b); // => ['1a', '2b', '3c']
Data Last
R.zipWith(fn)(first, second);
R.zipWith((a, b) => a + b)(["1", "2", "3"], ["a", "b", "c"]); // => ['1a', '2b', '3c']
Data Last
R.zipWith(fn)(first, second);
R.zipWith((a, b) => a + b, ["a", "b", "c"])(["1", "2", "3"]); // => ['1a', '2b', '3c']

compact

View source on GitHub

Filter out all falsy values. The values false, null, 0, "", undefined, and NaN are falsy.

! DEPRECATED: Use R.filter(items, R.isTruthy). Will be removed in V2!

Breaking changes in v2
R.compact(array);
R.compact([0, 1, false, 2, "", 3]); // => [1, 2, 3]

countBy

Indexed
View source on GitHub

Counts how many values of the collection pass the specified predicate.

! DEPRECATED: Use R.filter(items, fn).length. Will be removed in v2!

Data First
R.countBy(array, fn);
R.countBy([1, 2, 3, 4, 5], (x) => x % 2 === 0); // => 2
Data Last
R.countBy(fn)(array);
R.pipe(
  [1, 2, 3, 4, 5],
  R.countBy((x) => x % 2 === 0),
); // => 2

createPipe

View source on GitHub

Creates a data-last pipe function. First function must be always annotated. Other functions are automatically inferred.

! DEPRECATED: Use R.piped(op1, op2, op3). Will be removed in V2!

R.createPipe(op1, op2, op3)(data);
R.createPipe(
  (x: number) => x * 2,
  (x) => x * 3,
)(1); // => 6

equals

View source on GitHub

Returns true if its arguments are equivalent, false otherwise. NOTE: Doesn't handle cyclical data structures.

! DEPRECATED: Use R.isDeepEqual(a, b). Will be removed in V2.

Breaking changes in v2
Data First
R.equals(a, b);
R.equals(1, 1); //=> true
R.equals(1, "1"); //=> false
R.equals([1, 2, 3], [1, 2, 3]); //=> true
Data Last
R.equals(b)(a);
R.equals(1)(1); //=> true
R.equals("1")(1); //=> false
R.equals([1, 2, 3])([1, 2, 3]); //=> true

flatMapToObj

Indexed
View source on GitHub

Map each element of an array into an object using a defined callback function and flatten the result.

! DEPRECATED: Use R.fromEntries.strict(R.flatMap(array, fn)). Will be removed in V2!

Data First
R.flatMapToObj(array, fn);
R.flatMapToObj.indexed(array, fn);
R.flatMapToObj([1, 2, 3], (x) => (x % 2 === 1 ? [[String(x), x]] : [])); // => {1: 1, 3: 3}
R.flatMapToObj.indexed(["a", "b"], (x, i) => [
  [x, i],
  [x + x, i + i],
]); // => {a: 0, aa: 0, b: 1, bb: 2}
Data Last
R.flatMapToObj(fn)(array);
R.flatMapToObj(fn)(array);
R.pipe(
  [1, 2, 3],
  R.flatMapToObj((x) => (x % 2 === 1 ? [[String(x), x]] : [])),
); // => {1: 1, 3: 3}
R.pipe(
  ["a", "b"],
  R.flatMapToObj.indexed((x, i) => [
    [x, i],
    [x + x, i + i],
  ]),
); // => {a: 0, aa: 0, b: 1, bb: 2}

flatten

Lazy
View source on GitHub

Flattens array a single level deep.

! DEPRECATED Use R.flat(data). Will be removed in V2!

Breaking changes in v2
Data First
R.flatten(array);
R.flatten([[1, 2], [3], [4, 5]]); // => [1, 2, 3, 4, 5]
Data Last
R.flatten()(array);
R.pipe([[1, 2], [3], [4, 5]], R.flatten()); // => [1, 2, 3, 4, 5]

flattenDeep

Lazy
View source on GitHub

Recursively flattens array.

! DEPRECATED Use R.flat(data, 4). The typing for flattenDeep was broken for arrays nested more than 4 levels deep; this might lead to typing issues when migrating to the new function. Will be removed in V2!

R.flattenDeep(array);
R.flattenDeep([
  [1, 2],
  [[3], [4, 5]],
]); // => [1, 2, 3, 4, 5]
Data Last
R.flattenDeep()(array);
R.pipe(
  [
    [1, 2],
    [[3], [4, 5]],
  ],
  R.flattenDeep(),
); // => [1, 2, 3, 4, 5]

fromPairs

Strict
View source on GitHub

Creates a new object from an array of tuples by pairing up first and second elements as {[key]: value}. If a tuple is not supplied for any element in the array, the element will be ignored If duplicate keys exist, the tuple with the greatest index in the input array will be preferred.

The strict option supports more sophisticated use-cases like those that would result when calling the strict toPairs function.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • indexBy - Builds an object from an array of values and a mapper for keys.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.

! DEPRECATED: Use R.fromEntries(pairs), for dataLast invocations use the functional form R.fromEntries(). Will be removed in V2!

Data First
R.fromPairs(tuples);
R.fromPairs.strict(tuples);
R.fromPairs([
  ["a", "b"],
  ["c", "d"],
]); // => {a: 'b', c: 'd'} (type: Record<string, string>)
R.fromPairs.strict(["a", 1] as const); // => {a: 1} (type: {a: 1})
R.pipe(
  [
    ["a", "b"],
    ["c", "d"],
  ],
  R.fromPairs,
); // => {a: 'b', c: 'd'} (type: Record<string, string>)
R.pipe(["a", 1] as const, R.fromPairs.strict); // => {a: 1} (type: {a: 1})

A function that checks if the passed parameter is Nil (null or undefined) and narrows its type accordingly.

! DEPRECATED: Use R.isNullish(data). Will be removed in V2!

R.isNil(data);
R.isNil(undefined); //=> true
R.isNil(null); //=> true
R.isNil("somethingElse"); //=> false

isObject

View source on GitHub

A function that checks if the passed parameter is of type Object and narrows its type accordingly.

! DEPRECATED: Use: R.isObjectType(data) && R.isNonNull(data) && !R.isArray(data) or R.isPlainObject(data). Will be removed in V2!

R.isObject(data);
R.isObject({}); //=> true
R.isObject(Promise.resolve("something")); //=> true
R.isObject(new Date()); //=> true
R.isObject(new Error("error")); //=> true
R.isObject("somethingElse"); //=> false

maxBy

Indexed
View source on GitHub

Returns the max element using the provided predicate.

! DEPRECATED: Use R.firstBy([fn, "desc"]). Will be removed in V2!

Data Last
R.maxBy(fn)(array);
R.maxBy.indexed(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.maxBy((x) => x.a),
); // { a: 5 }
Data First
R.maxBy(array, fn);
R.maxBy.indexed(array, fn);
R.maxBy([{ a: 5 }, { a: 1 }, { a: 3 }], (x) => x.a); // { a: 5 }

minBy

Indexed
View source on GitHub

Returns the min element using the provided predicate.

! DEPRECATED: Use R.firstBy(fn). Will be removed in V2!

Data Last
R.minBy(fn)(array);
R.minBy.indexed(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.minBy((x) => x.a),
); // { a: 1 }
Data First
R.minBy(array, fn);
R.minBy.indexed(array, fn);
R.minBy([{ a: 5 }, { a: 1 }, { a: 3 }], (x) => x.a); // { a: 1 }

A function that returns always undefined.

! DEPRECATED: Use R.constant(undefined), or R.doNothing() if the function doesn't need to return a value. Will be removed in V2!

Breaking changes in v2
R.noop();
onSomething(R.noop);

reject

Indexed
Lazy
View source on GitHub

Reject the elements of an array that meet the condition specified in a callback function.

! DEPRECATED: Use R.filter(items, R.isNot(fn)). Will be removed in V2!

Breaking changes in v2
Data First
R.reject(array, fn);
R.reject.indexed(array, fn);
R.reject([1, 2, 3], (x) => x % 2 === 0); // => [1, 3]
R.reject.indexed([1, 2, 3], (x, i, array) => x % 2 === 0); // => [1, 3]
Data First
R.reject(array, fn);
R.reject.indexed(array, fn);
R.reject([1, 2, 3], (x) => x % 2 === 0); // => [1, 3]
R.reject.indexed([1, 2, 3], (x, i, array) => x % 2 === 0); // => [1, 3]

toPairs

Strict
View source on GitHub

Returns an array of key/values of the enumerable properties of an object.

! DEPRECATED Use R.entries(object), for dataLast invocations use the functional form R.entries(). Will be removed in V2!

Data First
R.toPairs(object);
R.toPairs.strict(object);
R.toPairs({ a: 1, b: 2, c: 3 }); // => [['a', 1], ['b', 2], ['c', 3]]
R.toPairs.strict({ a: 1 } as const); // => [['a', 1]] typed Array<['a', 1]>
R.pipe({ a: 1, b: 2, c: 3 }, toPairs); // => [['a', 1], ['b', 2], ['c', 3]]
R.pipe({ a: 1 } as const, toPairs.strict); // => [['a', 1]] typed Array<['a', 1]>

Gives a single-word string description of the (native) type of a value, returning such answers as 'Object', 'Number', 'Array', or 'Null'. Does not attempt to distinguish user Object types any further, reporting them all as 'Object'.

! DEPRECATED: Use typeof val, or one of the guards offered by this library. Will be removed in V2! We don't know what the use case for this function is. If you have a use case reach out via a GitHub issue so we can discuss this.

Breaking changes in v2
R.type(obj);
R.type({}); //=> "Object"
R.type(1); //=> "Number"
R.type(false); //=> "Boolean"
R.type("s"); //=> "String"
R.type(null); //=> "Null"
R.type([]); //=> "Array"
R.type(/[A-z]/); //=> "RegExp"
R.type(() => {}); //=> "Function"
R.type(undefined); //=> "Undefined"

uniq

Lazy
View source on GitHub

Returns a new array containing only one copy of each element in the original list. Elements are compared by reference using Set.

! DEPRECATED: Use R.unique(array). Will be removed in V2.

Breaking changes in v2
Data First
R.uniq(array);
R.uniq([1, 2, 2, 5, 1, 6, 7]); // => [1, 2, 5, 6, 7]
Data Last
R.uniq()(array);
R.pipe(
  [1, 2, 2, 5, 1, 6, 7], // only 4 iterations
  R.uniq(),
  R.take(3),
); // => [1, 2, 5]

uniqBy

Lazy
View source on GitHub

Returns a new array containing only one copy of each element in the original list transformed by a function. Elements are compared by reference using Set.

! DEPRECATED: Use R.uniqueBy(array, fn). Will be removed in V2!

Data First
R.uniqBy(array, fn);
R.uniqBy(
  [{ n: 1 }, { n: 2 }, { n: 2 }, { n: 5 }, { n: 1 }, { n: 6 }, { n: 7 }],
  (obj) => obj.n,
); // => [{n: 1}, {n: 2}, {n: 5}, {n: 6}, {n: 7}]
Data Last
R.uniqBy(fn)(array);
R.pipe(
  [{ n: 1 }, { n: 2 }, { n: 2 }, { n: 5 }, { n: 1 }, { n: 6 }, { n: 7 }], // only 4 iterations
  R.uniqBy((obj) => obj.n),
  R.take(3),
); // => [{n: 1}, {n: 2}, {n: 5}]

uniqWith

View source on GitHub

Returns a new array containing only one copy of each element in the original list. Elements are compared by custom comparator isEquals.

! DEPRECATED: Use R.uniqueWith(array, isEquals). Will be removed in V2!

Data First
R.uniqWith(array, isEquals);
R.uniqWith(
  [{ a: 1 }, { a: 2 }, { a: 2 }, { a: 5 }, { a: 1 }, { a: 6 }, { a: 7 }],
  R.equals,
); // => [{a: 1}, {a: 2}, {a: 5}, {a: 6}, {a: 7}]
Data Last
R.uniqWith(isEquals)(array);
R.uniqWith(R.equals)([
  { a: 1 },
  { a: 2 },
  { a: 2 },
  { a: 5 },
  { a: 1 },
  { a: 6 },
  { a: 7 },
]); // => [{a: 1}, {a: 2}, {a: 5}, {a: 6}, {a: 7}]
R.pipe(
  [{ a: 1 }, { a: 2 }, { a: 2 }, { a: 5 }, { a: 1 }, { a: 6 }, { a: 7 }], // only 4 iterations
  R.uniqWith(R.equals),
  R.take(3),
); // => [{a: 1}, {a: 2}, {a: 5}]

zipObj

View source on GitHub

Creates a new object from two supplied lists by pairing up equally-positioned items. Key/value pairing is truncated to the length of the shorter of the two lists.

! DEPRECATED: Use R.fromEntries.strict(R.zip(first, second)). Will be removed in V2!

Data First
R.zipObj(first, second);
R.zipObj(["a", "b"], [1, 2]); // => {a: 1, b: 2}
Data Last
R.zipObj(second)(first);
R.zipObj([1, 2])(["a", "b"]); // => {a: 1, b: 2}

conditional

View source on GitHub

Executes a transformer function based on the first matching predicate, functioning like a series of if...else if... statements. It sequentially evaluates each case and, upon finding a truthy predicate, runs the corresponding transformer, and returns, ignoring any further cases, even if they would match.

!IMPORTANT! - Unlike similar implementations in frameworks like Lodash and Ramda, the Remeda implementation does NOT return a default/fallback undefined value when none of the cases match; and instead will throw an exception in those cases. To add a default case use the conditional.defaultCase helper as the final case of your implementation. By default it returns undefined, but could be provided a transformer in order to return something else.

Due to TypeScript's inability to infer the result of negating a type- predicate we can't refine the types used in subsequent cases based on previous conditions. Using a switch (true) statement or ternary operators is recommended for more precise type control when such type narrowing is needed.

Data Last
R.conditional(...cases)(data);
const nameOrId = 3 as string | number;
R.pipe(
  nameOrId,
  R.conditional(
    [R.isString, (name) => `Hello ${name}`],
    [R.isNumber, (id) => `Hello ID: ${id}`],
    R.conditional.defaultCase(
      (something) => `Hello something (${JSON.stringify(something)})`,
    ),
  ),
); //=> 'Hello ID: 3'
Data First
R.conditional(data, ...cases);
const nameOrId = 3 as string | number;
R.conditional(
  nameOrId,
  [R.isString, (name) => `Hello ${name}`],
  [R.isNumber, (id) => `Hello ID: ${id}`],
  R.conditional.defaultCase(
    (something) => `Hello something (${JSON.stringify(something)})`,
  ),
); //=> 'Hello ID: 3'

constant

View source on GitHub

A function that takes any arguments and returns the provided value on every invocation. This is useful to provide trivial implementations for APIs or in combination with a ternary or other conditional execution to allow to short- circuit more complex implementations for a specific case.

Notice that this is a dataLast impl where the function needs to be invoked to get the "do nothing" function.

Data Last
R.constant(value);
R.map([1, 2, 3], R.constant("a")); // => ['a', 'a', 'a']
R.map([1, 2, 3], isDemoMode ? R.add(1) : R.constant(0)); // => [2, 3, 4] or [0, 0, 0]

debounce

View source on GitHub

Wraps func with a debouncer object that "debounces" (delays) invocations of the function during a defined cool-down period (waitMs). It can be configured to invoke the function either at the start of the cool-down period, the end of it, or at both ends (timing). It can also be configured to allow invocations during the cool-down period (maxWaitMs). It stores the latest call's arguments so they could be used at the end of the cool-down period when invoking func (if configured to invoke the function at the end of the cool-down period). It stores the value returned by func whenever its invoked. This value is returned on every call, and is accessible via the cachedValue property of the debouncer. Its important to note that the value might be different from the value that would be returned from running func with the current arguments as it is a cached value from a previous invocation. Important: The cool-down period defines the minimum between two invocations, and not the maximum. The period will be extended each time a call is made until a full cool-down period has elapsed without any additional calls.

Data First
R.debounce(func, options);
const debouncer = debounce(identity, { timing: "trailing", waitMs: 1000 });
const result1 = debouncer.call(1); // => undefined
const result2 = debouncer.call(2); // => undefined
// after 1 second
const result3 = debouncer.call(3); // => 2
// after 1 second
debouncer.cachedValue; // => 3

doNothing

View source on GitHub

A function that takes any arguments and does nothing with them. This is useful as a placeholder for any function or API that requires a void function (a function that doesn't return a value). This could also be used in combination with a ternary or other conditional execution to allow disabling a function call for a specific case.

Notice that this is a dataLast impl where the function needs to be invoked to get the "do nothing" function.

Data Last
R.doNothing();
myApi({ onSuccess: handleSuccess, onError: R.doNothing() });
myApi({ onSuccess: isDemoMode ? R.doNothing() : handleSuccess });

identity

View source on GitHub

A function that always returns the param passed to it.

Breaking changes in v2
R.identity(data);
R.identity("foo"); // => 'foo'

Creates a function that is restricted to invoking func once. Repeat calls to the function return the value of the first invocation.

R.once(fn);
const initialize = R.once(createApplication);
initialize();
initialize();
// => `createApplication` is invoked once

Perform left-to-right function composition.

Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]

A dataLast version of pipe that could be used to provide more complex computations to functions that accept a function as a param (like map, filter, groupBy, etc.).

The first function must be always annotated. Other functions are automatically inferred.

R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]

Creates a function with dataFirst and dataLast signatures.

purry is a dynamic function and it's not type safe. It should be wrapped by a function that have proper typings. Refer to the example below for correct usage.

!IMPORTANT: functions that simply call purry and return the result (like almost all functions in this library) should return unknown themselves if an explicit return type is required. This is because we currently don't provide a generic return type that is built from the input function, and crafting one manually isn't worthwhile as we rely on function declaration overloading to combine the types for dataFirst and dataLast invocations!

Breaking changes in v2
R.purry(fn, arguments);
function _findIndex(array, fn) {
  for (let i = 0; i < array.length; i++) {
    if (fn(array[i])) {
      return i;
    }
  }
  return -1;
}

// data-first
function findIndex<T>(array: T[], fn: (item: T) => boolean): number;

// data-last
function findIndex<T>(fn: (item: T) => boolean): (array: T[]) => number;

function findIndex() {
  return R.purry(_findIndex, arguments);
}

hasSubObject

View source on GitHub

Checks if subObject is a sub-object of object, which means for every property and value in subObject, there's the same property in object with an equal value. Equality is checked with isDeepEqual.

Data First
R.hasSubObject(data, subObject);
R.hasSubObject({ a: 1, b: 2, c: 3 }, { a: 1, c: 3 }); //=> true
R.hasSubObject({ a: 1, b: 2, c: 3 }, { b: 4 }); //=> false
R.hasSubObject({ a: 1, b: 2, c: 3 }, {}); //=> true
Data Last
R.hasSubObject(subObject)(data);
R.hasSubObject({ a: 1, c: 3 })({ a: 1, b: 2, c: 3 }); //=> true
R.hasSubObject({ b: 4 })({ a: 1, b: 2, c: 3 }); //=> false
R.hasSubObject({})({ a: 1, b: 2, c: 3 }); //=> true

A function that checks if the passed parameter is an Array and narrows its type accordingly.

R.isArray(data);
R.isArray([5]); //=> true
R.isArray([]); //=> true
R.isArray("somethingElse"); //=> false

A function that checks if the passed parameter is a boolean and narrows its type accordingly.

R.isBoolean(data);
R.isBoolean(true); //=> true
R.isBoolean(false); //=> true
R.isBoolean("somethingElse"); //=> false

A function that checks if the passed parameter is a Date and narrows its type accordingly.

R.isDate(data);
R.isDate(new Date()); //=> true
R.isDate("somethingElse"); //=> false

isDeepEqual

View source on GitHub

Performs a deep semantic comparison between two values to determine if they are equivalent. For primitive values this is equivalent to ===, for arrays the check would be performed on every item recursively, in order, and for objects all props will be compared recursively. The built-in Date and RegExp are special-cased and will be compared by their values.

!IMPORTANT: Sets, TypedArrays, and symbol properties of objects are not supported right now and might result in unexpected behavior. Please open an issue in the Remeda github project if you need support for these types.

The result would be narrowed to the second value so that the function can be used as a type guard.

Data First
R.isDeepEqual(data, other);
R.isDeepEqual(1, 1); //=> true
R.isDeepEqual(1, "1"); //=> false
R.isDeepEqual([1, 2, 3], [1, 2, 3]); //=> true
Data Last
R.isDeepEqual(other)(data);
R.pipe(1, R.isDeepEqual(1)); //=> true
R.pipe(1, R.isDeepEqual("1")); //=> false
R.pipe([1, 2, 3], R.isDeepEqual([1, 2, 3])); //=> true

isDefined

Strict
View source on GitHub

A function that checks if the passed parameter is defined and narrows its type accordingly. To test specifically for undefined (and not null) use the strict variant of this function.

! DEPRECATED: If your type accepts null use R.isNullish(data), otherwise prefer R.isDefined.strict(data). The non-strict version will be removed in V2!

R.isDefined(data);
R.isDefined.strict(data);
R.isDefined("string"); //=> true
R.isDefined(null); //=> false
R.isDefined(undefined); //=> false
R.isDefined.strict(null); //=> true
R.isDefined.strict(undefined); //=> false

A function that checks if the passed parameter is empty.

undefined is also considered empty, but only when it's in a union with a string or string-like type.

This guard doesn't work negated because of typescript limitations! If you need to check that an array is not empty, use R.hasAtLeast(data, 1) and not !R.isEmpty(data). For strings and objects there's no way in typescript to narrow the result to a non-empty type.

R.isEmpty(data);
R.isEmpty(undefined); //=>true
R.isEmpty(""); //=> true
R.isEmpty([]); //=> true
R.isEmpty({}); //=> true
R.isEmpty("test"); //=> false
R.isEmpty([1, 2, 3]); //=> false
R.isEmpty({ length: 0 }); //=> false

A function that checks if the passed parameter is an Error and narrows its type accordingly.

R.isError(data);
R.isError(new Error("message")); //=> true
R.isError("somethingElse"); //=> false

A function that checks if the passed parameter is a Function and narrows its type accordingly.

R.isFunction(data);
R.isFunction(() => {}); //=> true
R.isFunction("somethingElse"); //=> false

isIncludedIn

View source on GitHub

Checks if the item is included in the container. This is a wrapper around Array.prototype.includes and Set.prototype.has and thus relies on the same equality checks that those functions do (which is reference equality, e.g. ===). In some cases the input's type is also narrowed to the container's item types.

Notice that unlike most functions, this function takes a generic item as it's data and an array as it's parameter.

Data First
R.isIncludedIn(data, container);
R.isIncludedIn(2, [1, 2, 3]); // => true
R.isIncludedIn(4, [1, 2, 3]); // => false

const data = "cat" as "cat" | "dog" | "mouse";
R.isIncludedIn(data, ["cat", "dog"] as const); // true (typed "cat" | "dog");
Data Last
R.isIncludedIn(container)(data);
R.pipe(2, R.isIncludedIn([1, 2, 3])); // => true
R.pipe(4, R.isIncludedIn([1, 2, 3])); // => false

const data = "cat" as "cat" | "dog" | "mouse";
R.pipe(data, R.isIncludedIn(["cat", "dog"] as const)); // => true (typed "cat" | "dog");

A function that checks if the passed parameter is not null and narrows its type accordingly. Notice that undefined is not null!

R.isNonNull(data);
R.isNonNull("string"); //=> true
R.isNonNull(null); //=> false
R.isNonNull(undefined); //=> true

isNonNullish

Strict
View source on GitHub

A function that checks if the passed parameter is defined AND isn't null and narrows its type accordingly.

R.isNonNullish(data);
R.isNonNullish("string"); //=> true
R.isNonNullish(null); //=> false
R.isNonNullish(undefined); //=> false

A function that takes a guard function as predicate and returns a guard that negates it.

Data Last
R.isNot(R.isTruthy)(data);
R.isNot(R.isTruthy)(false); //=> true
R.isNot(R.isTruthy)(true); //=> false

A function that checks if the passed parameter is either null or undefined and narrows its type accordingly.

R.isNullish(data);
R.isNullish(undefined); //=> true
R.isNullish(null); //=> true
R.isNullish("somethingElse"); //=> false

A function that checks if the passed parameter is a number and narrows its type accordingly.

R.isNumber(data);
R.isNumber(1); //=> true
R.isNumber("notANumber"); //=> false

isObjectType

View source on GitHub

Checks if the given parameter is of type "object" via typeof, excluding null.

It's important to note that in JavaScript, many entities are considered objects, like Arrays, Classes, RegExps, Maps, Sets, Dates, URLs, Promise, Errors, and more. Although technically an object too, null is not considered an object by this function, so that its easier to narrow nullables.

For a more specific check that is limited to plain objects (simple struct/shape/record-like objects), consider using isPlainObject instead. For a simpler check that only removes null from the type prefer isNonNull or isDefined.

Data First
R.isObjectType(data);
// true
R.isObjectType({}); //=> true
R.isObjectType([]); //=> true
R.isObjectType(Promise.resolve("something")); //=> true
R.isObjectType(new Date()); //=> true
R.isObjectType(new Error("error")); //=> true

// false
R.isObjectType("somethingElse"); //=> false
R.isObjectType(null); //=> false

isPlainObject

View source on GitHub

Checks if data is a "plain" object. A plain object is defined as an object with string keys and values of any type, including primitives, other objects, functions, classes, etc (aka struct/shape/record/simple). Technically, a plain object is one whose prototype is either Object.prototype or null, ensuring it does not inherit properties or methods from other object types.

This function is narrower in scope than isObjectType, which accepts any entity considered an "object" by JavaScript's typeof.

Note that Maps, Arrays, and Sets are not considered plain objects and would return false.

R.isPlainObject(data);
// true
R.isPlainObject({}); //=> true
R.isPlainObject({ a: 123 }); //=> true

// false
R.isPlainObject([]); //=> false
R.isPlainObject(Promise.resolve("something")); //=> false
R.isPlainObject(new Date()); //=> false
R.isPlainObject(new Error("error")); //=> false
R.isPlainObject("somethingElse"); //=> false
R.isPlainObject(null); //=> false

A function that checks if the passed parameter is a Promise and narrows its type accordingly.

R.isPromise(data);
R.isPromise(Promise.resolve(5)); //=> true
R.isPromise(Promise.reject(5)); //=> true
R.isPromise("somethingElse"); //=> false

A function that checks if the passed parameter is a string and narrows its type accordingly.

R.isString(data);
R.isString("string"); //=> true
R.isString(1); //=> false

A function that checks if the passed parameter is a symbol and narrows its type accordingly.

R.isSymbol(data);
R.isSymbol(Symbol("foo")); //=> true
R.isSymbol(1); //=> false

A function that checks if the passed parameter is truthy and narrows its type accordingly.

R.isTruthy(data);
R.isTruthy("somethingElse"); //=> true
R.isTruthy(null); //=> false
R.isTruthy(undefined); //=> false
R.isTruthy(false); //=> false
R.isTruthy(0); //=> false
R.isTruthy(""); //=> false

randomString

View source on GitHub

Random a non-cryptographic random string from characters a-zA-Z0-9.

Data First
R.randomString(length);
R.randomString(5); // => aB92J
R.pipe(5, R.randomString); // => aB92J

sliceString

Strict
View source on GitHub

A data-last version of String.prototype.slice so it could be used in pipes.

NOTE: You don't need this function if you are calling it directly, just use String.prototype.slice directly. This function doesn't provide any type improvements over the built-in types.

Data Last
R.sliceString(indexStart)(string);
R.sliceString(indexStart, indexEnd)(string);
R.sliceString(1)(`abcdefghijkl`); // => `bcdefghijkl`
R.sliceString(4, 7)(`abcdefghijkl`); // => `efg`

stringToPath

View source on GitHub

Converts a path string to an array of string keys (including array index access keys). !IMPORTANT!: Attempting to pass a simple string type will result in the result being inferred as never. This is intentional to help with type-safety as this function is primarily intended to help with other "object path access" functions like pathOr or setPath.

Data First
R.stringToPathArray(path);

Calls the given function with the given value, then returns the given value. The return value of the provided function is ignored.

This allows "tapping into" a function sequence in a pipe, to perform side effects on intermediate results.

Data First
R.tap(value, fn);
R.tap("foo", console.log); // => "foo"
Data Last
R.tap(fn)(value);
R.pipe(
  [-5, -1, 2, 3],
  R.filter((n) => n > 0),
  R.tap(console.log), // prints [2, 3]
  R.map((n) => n * 2),
); // => [4, 6]

Calls an input function n times, returning an array containing the results of those function calls.

fn is passed one argument: The current value of n, which begins at 0 and is gradually incremented to n - 1.

Data First
//! Missing Signature!
Data Last
//! Missing Signature!