Documentation

Intro

Welcome to the Remeda documentation and API reference. Below, you’ll find the complete reference for all functions exported by Remeda.

Previous Versions

Are you using version 1.x.x? Visit our migration guide to help you transition to the latest version.


Adds two numbers.

Data First
R.add(value, addend);
R.add(10, 5); // => 15
R.add(10, -5); // => 5
R.reduce([1, 2, 3, 4], R.add, 0); // => 10
Data First
R.add(value, addend);
R.add(10, 5); // => 15
R.add(10, -5); // => 5
R.reduce([1, 2, 3, 4], R.add, 0); // => 10
Data Last
R.add(addend)(value);
R.add(5)(10); // => 15
R.add(-5)(10); // => 5
R.map([1, 2, 3, 4], R.add(1)); // => [2, 3, 4, 5]
Data First
R.add(value, addend);
R.add(10, 5); // => 15
R.add(10, -5); // => 5
R.reduce([1, 2, 3, 4], R.add, 0); // => 10

Rounds up a given number to a specific precision. If you'd like to round up to an integer (i.e. use this function with constant precision === 0), use Math.ceil instead, as it won't incur the additional library overhead.

Data First
R.ceil(value, precision);
R.ceil(123.9876, 3); // => 123.988
R.ceil(483.22243, 1); // => 483.3
R.ceil(8541, -1); // => 8550
R.ceil(456789, -3); // => 457000
Data Last
R.ceil(precision)(value);
R.ceil(3)(123.9876); // => 123.988
R.ceil(1)(483.22243); // => 483.3
R.ceil(-1)(8541); // => 8550
R.ceil(-3)(456789); // => 457000

Clamp the given value within the inclusive min and max bounds.

Data First
R.clamp(value, { min, max });
clamp(10, { min: 20 }); // => 20
clamp(10, { max: 5 }); // => 5
clamp(10, { max: 20, min: 5 }); // => 10
Data Last
R.clamp({ min, max })(value);
clamp({ min: 20 })(10); // => 20
clamp({ max: 5 })(10); // => 5
clamp({ max: 20, min: 5 })(10); // => 10

Divides two numbers.

Data First
R.divide(value, divisor);
R.divide(12, 3); // => 4
R.reduce([1, 2, 3, 4], R.divide, 24); // => 1
Data First
R.divide(value, divisor);
R.divide(12, 3); // => 4
R.reduce([1, 2, 3, 4], R.divide, 24); // => 1
Data Last
R.divide(divisor)(value);
R.divide(3)(12); // => 4
R.map([2, 4, 6, 8], R.divide(2)); // => [1, 2, 3, 4]
Data First
R.divide(value, divisor);
R.divide(12, 3); // => 4
R.reduce([1, 2, 3, 4], R.divide, 24); // => 1

Rounds down a given number to a specific precision. If you'd like to round down to an integer (i.e. use this function with constant precision === 0), use Math.floor instead, as it won't incur the additional library overhead.

Data First
R.floor(value, precision);
R.floor(123.9876, 3); // => 123.987
R.floor(483.22243, 1); // => 483.2
R.floor(8541, -1); // => 8540
R.floor(456789, -3); // => 456000
Data Last
R.floor(precision)(value);
R.floor(3)(123.9876); // => 123.987
R.floor(1)(483.22243); // => 483.2
R.floor(-1)(8541); // => 8540
R.floor(-3)(456789); // => 456000

Returns the mean of the elements of an array.

Only number arrays are supported, as bigint is unable to represent fractional values.

IMPORTANT: The result for empty arrays would be undefined, regardless of the type of the array. This approach improves type-checking and ensures that cases where NaN might occur are handled properly. To avoid adding this to the return type for cases where the array is known to be non-empty you can use hasAtLeast or isEmpty to guard against this case.

Data First
R.mean(data);
R.mean([1, 2, 3]); // => 2
R.mean([]); // => undefined
Data Last
R.mean()(data);
R.pipe([1, 2, 3], R.mean()); // => 2
R.pipe([], R.mean()); // => undefined

Returns the median of the elements of an array.

Only number arrays are supported, as bigint is unable to represent fractional values.

IMPORTANT: The result for empty arrays would be undefined, regardless of the type of the array. This approach improves type-checking and ensures that cases where NaN might occur are handled properly. To avoid adding this to the return type for cases where the array is known to be non-empty you can use hasAtLeast or isEmpty to guard against this case.

Data First
R.median(data);
R.pipe([6, 10, 11], R.median()); // => 10
R.median([]); // => undefined
Data Last
R.median()(data);
R.pipe([6, 10, 11], R.median()); // => 10
R.pipe([], R.median()); // => undefined

Multiplies two numbers.

Data First
R.multiply(value, multiplicand);
R.multiply(3, 4); // => 12
R.reduce([1, 2, 3, 4], R.multiply, 1); // => 24
Data First
R.multiply(value, multiplicand);
R.multiply(3, 4); // => 12
R.reduce([1, 2, 3, 4], R.multiply, 1); // => 24
Data Last
R.multiply(multiplicand)(value);
R.multiply(4)(3); // => 12
R.map([1, 2, 3, 4], R.multiply(2)); // => [2, 4, 6, 8]
Data First
R.multiply(value, multiplicand);
R.multiply(3, 4); // => 12
R.reduce([1, 2, 3, 4], R.multiply, 1); // => 24

Compute the product of the numbers in the array, or return 1 for an empty array.

Works for both number and bigint arrays, but not arrays that contain both types.

IMPORTANT: The result for empty arrays would be 1 (number) regardless of the type of the array; to avoid adding this to the return type for cases where the array is known to be non-empty you can use hasAtLeast or isEmpty to guard against this case.

Data First
R.product(data);
R.product([1, 2, 3]); // => 6
R.product([1n, 2n, 3n]); // => 6n
R.product([]); // => 1
Data Last
R.product()(data);
R.pipe([1, 2, 3], R.product()); // => 6
R.pipe([1n, 2n, 3n], R.product()); // => 6n
R.pipe([], R.product()); // => 1

randomBigInt

View source on GitHub

Generate a random bigint between from and to (inclusive).

! Important: In most environments this function uses crypto.getRandomValues() under-the-hood which is cryptographically strong. When the WebCrypto API isn't available (Node 18) we fallback to an implementation that uses Math.random() which is NOT cryptographically secure.

Data First
R.randomBigInt(from, to);
R.randomBigInt(1n, 10n); // => 5n

randomInteger

View source on GitHub

Generate a random integer between from and to (inclusive).

!Important: This function uses Math.random() under-the-hood, which has two major limitations:

  1. It generates 2^52 possible values, so the bigger the range, the less uniform the distribution of values would be, and at ranges larger than that some values would never come up.
  2. It is not cryptographically secure and should not be used for security scenarios.
Data First
R.randomInteger(from, to);
R.randomInteger(1, 10); // => 5
R.randomInteger(1.5, 2.6); // => 2

Rounds a given number to a specific precision. If you'd like to round to an integer (i.e. use this function with constant precision === 0), use Math.round instead, as it won't incur the additional library overhead.

Data First
R.round(value, precision);
R.round(123.9876, 3); // => 123.988
R.round(483.22243, 1); // => 483.2
R.round(8541, -1); // => 8540
R.round(456789, -3); // => 457000
Data Last
R.round(precision)(value);
R.round(3)(123.9876); // => 123.988
R.round(1)(483.22243); // => 483.2
R.round(-1)(8541); // => 8540
R.round(-3)(456789); // => 457000

Subtracts two numbers.

Data First
R.subtract(value, subtrahend);
R.subtract(10, 5); // => 5
R.subtract(10, -5); // => 15
R.reduce([1, 2, 3, 4], R.subtract, 20); // => 10
Data First
R.subtract(value, subtrahend);
R.subtract(10, 5); // => 5
R.subtract(10, -5); // => 15
R.reduce([1, 2, 3, 4], R.subtract, 20); // => 10
Data Last
R.subtract(subtrahend)(value);
R.subtract(5)(10); // => 5
R.subtract(-5)(10); // => 15
R.map([1, 2, 3, 4], R.subtract(1)); // => [0, 1, 2, 3]
Data First
R.subtract(value, subtrahend);
R.subtract(10, 5); // => 5
R.subtract(10, -5); // => 15
R.reduce([1, 2, 3, 4], R.subtract, 20); // => 10

Sums the numbers in the array, or return 0 for an empty array.

Works for both number and bigint arrays, but not arrays that contain both types.

IMPORTANT: The result for empty arrays would be 0 (number) regardless of the type of the array; to avoid adding this to the return type for cases where the array is known to be non-empty you can use hasAtLeast or isEmpty to guard against this case.

Data First
R.sum(data);
R.sum([1, 2, 3]); // => 6
R.sum([1n, 2n, 3n]); // => 6n
R.sum([]); // => 0
Data Last
R.sum()(data);
R.pipe([1, 2, 3], R.sum()); // => 6
R.pipe([1n, 2n, 3n], R.sum()); // => 6n
R.pipe([], R.sum()); // => 0

Add a new property to an object.

The function doesn't do any checks on the input object. If the property already exists it will be overwritten, and the type of the new value is not checked against the previous type.

Use set to override values explicitly with better protections.

Data First
R.addProp(obj, prop, value);
R.addProp({ firstName: "john" }, "lastName", "doe"); // => {firstName: 'john', lastName: 'doe'}
Data Last
R.addProp(prop, value)(obj);
R.addProp("lastName", "doe")({ firstName: "john" }); // => {firstName: 'john', lastName: 'doe'}

Creates a deep copy of the value. Supported types: plain objects, Array, number, string, boolean, Date, and RegExp. Functions are assigned by reference rather than copied. Class instances or any other built-in type that isn't mentioned above are not supported (but might work).

Data First
R.clone(data);
R.clone({ foo: "bar" }); // {foo: 'bar'}
Data Last
R.clone()(data);
R.pipe({ foo: "bar" }, R.clone()); // {foo: 'bar'}

Returns an array of key/values of the enumerable properties of an object.

Data First
R.entries(object);
R.entries({ a: 1, b: 2, c: 3 }); // => [['a', 1], ['b', 2], ['c', 3]]
Data Last
R.entries()(object);
R.pipe({ a: 1, b: 2, c: 3 }, R.entries()); // => [['a', 1], ['b', 2], ['c', 3]]

Creates a new object by applying functions that is included in evolver object parameter to the data object parameter according to their corresponding path.

Functions included in evolver object will not be invoked if its corresponding key does not exist in the data object. Also, values included in data object will be kept as is if its corresponding key does not exist in the evolver object.

Data First
R.evolve(data, evolver);
const evolver = {
  count: add(1),
  time: { elapsed: add(1), remaining: add(-1) },
};
const data = {
  id: 10,
  count: 10,
  time: { elapsed: 100, remaining: 1400 },
};
evolve(data, evolver);
// => {
//   id: 10,
//   count: 11,
//   time: { elapsed: 101, remaining: 1399 },
// }
Data Last
R.evolve(evolver)(data);
const evolver = {
  count: add(1),
  time: { elapsed: add(1), remaining: add(-1) },
};
const data = {
  id: 10,
  count: 10,
  time: { elapsed: 100, remaining: 1400 },
};
R.pipe(object, R.evolve(evolver));
// => {
//   id: 10,
//   count: 11,
//   time: { elapsed: 101, remaining: 1399 },
// }

forEachObj

View source on GitHub

Iterate an object using a defined callback function.

The dataLast version returns the original object (instead of not returning anything (void)) to allow using it in a pipe. The returned object is the same reference as the input object, and not a shallow copy of it!

Data First
R.forEachObj(object, fn);
R.forEachObj({ a: 1 }, (val, key, obj) => {
  console.log(`${key}: ${val}`);
}); // "a: 1"
Data Last
R.forEachObj(fn)(object);
R.pipe(
  { a: 1 },
  R.forEachObj((val, key) => console.log(`${key}: ${val}`)),
); // "a: 1"

fromEntries

View source on GitHub

Creates a new object from an array of tuples by pairing up first and second elements as {[key]: value}. If a tuple is not supplied for any element in the array, the element will be ignored If duplicate keys exist, the tuple with the greatest index in the input array will be preferred.

The strict option supports more sophisticated use-cases like those that would result when calling the strict toPairs function.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • indexBy - Builds an object from an array of values and a mapper for keys.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.fromEntries(tuples);
R.fromEntries([
  ["a", "b"],
  ["c", "d"],
]); // => {a: 'b', c: 'd'}
Data Last
R.fromEntries()(tuples);
R.pipe(
  [
    ["a", "b"],
    ["c", "d"],
  ] as const,
  R.fromEntries(),
); // => {a: 'b', c: 'd'}

Creates an object that maps each key in data to the result of mapper for that key. Duplicate keys are overwritten, guaranteeing that mapper is run for each item in data.

There are several other functions that could be used to build an object from an array:

  • indexBy - Builds an object from an array of values and a mapper for keys.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • fromEntries - Builds an object from an array of key-value pairs.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.fromKeys(data, mapper);
R.fromKeys(["cat", "dog"], R.length()); // { cat: 3, dog: 3 } (typed as Partial<Record<"cat" | "dog", number>>)
R.fromKeys([1, 2], R.add(1)); // { 1: 2, 2: 3 } (typed as Partial<Record<1 | 2, number>>)
Data Last
R.fromKeys(mapper)(data);
R.pipe(["cat", "dog"], R.fromKeys(R.length())); // { cat: 3, dog: 3 } (typed as Partial<Record<"cat" | "dog", number>>)
R.pipe([1, 2], R.fromKeys(R.add(1))); // { 1: 2, 2: 3 } (typed as Partial<Record<1 | 2, number>>)

Returns an object whose keys and values are swapped. If the object contains duplicate values, subsequent values will overwrite previous values.

Data First
R.invert(object);
R.invert({ a: "d", b: "e", c: "f" }); // => { d: "a", e: "b", f: "c" }
Data Last
R.invert()(object);
R.pipe({ a: "d", b: "e", c: "f" }, R.invert()); // => { d: "a", e: "b", f: "c" }

Returns a new array containing the keys of the array or object.

Data First
R.keys(source);
R.keys(["x", "y", "z"]); // => ['0', '1', '2']
R.keys({ a: "x", b: "y", 5: "z" }); // => ['a', 'b', '5']
Data Last
R.keys()(source);
R.Pipe(["x", "y", "z"], keys()); // => ['0', '1', '2']
R.pipe({ a: "x", b: "y", 5: "z" } as const, R.keys()); // => ['a', 'b', '5']

Maps keys of object and keeps the same values.

Data First
R.mapKeys(object, fn);
R.mapKeys({ a: 1, b: 2 }, (key, value) => key + value); // => { a1: 1, b2: 2 }
Data Last
R.mapKeys(fn)(object);
R.pipe(
  { a: 1, b: 2 },
  R.mapKeys((key, value) => key + value),
); // => { a1: 1, b2: 2 }

Maps values of object and keeps the same keys. Symbol keys are not passed to the mapper and will be removed from the output object.

To also copy the symbol keys to the output use merge: merge(data, mapValues(data, mapper))).

Data First
R.mapValues(data, mapper);
R.mapValues({ a: 1, b: 2 }, (value, key) => value + key); // => {a: '1a', b: '2b'}
Data Last
R.mapValues(mapper)(data);
R.pipe(
  { a: 1, b: 2 },
  R.mapValues((value, key) => value + key),
); // => {a: '1a', b: '2b'}

Merges two objects into one by combining their properties, effectively creating a new object that incorporates elements from both. The merge operation prioritizes the second object's properties, allowing them to overwrite those from the first object with the same names.

Equivalent to { ...data, ...source }.

Data First
R.merge(data, source);
R.merge({ x: 1, y: 2 }, { y: 10, z: 2 }); // => { x: 1, y: 10, z: 2 }
Data Last
R.merge(source)(data);
R.pipe({ x: 1, y: 2 }, R.merge({ y: 10, z: 2 })); // => { x: 1, y: 10, z: 2 }

Merges the source object into the destination object. The merge is similar to performing { ...destination, ... source } (where disjoint values from each object would be copied as-is, and for any overlapping props the value from source would be used); But for each prop (p), if both destination and source have a plain-object as a value, the value would be taken as the result of recursively deepMerging them (result.p === deepMerge(destination.p, source.p)).

Data First
R.mergeDeep(destination, source);
R.mergeDeep({ foo: "bar", x: 1 }, { foo: "baz", y: 2 }); // => { foo: 'baz', x: 1, y: 2 }
Data Last
R.mergeDeep(source)(destination);
R.pipe({ foo: "bar", x: 1 }, R.mergeDeep({ foo: "baz", y: 2 })); // => { foo: 'baz', x: 1, y: 2 }

Creates an object containing a single key:value pair.

R.objOf(value, key);
R.objOf(10, "a"); // => { a: 10 }
R.objOf(key)(value);
R.pipe(10, R.objOf("a")); // => { a: 10 }

Returns a partial copy of an object omitting the keys specified.

Data Last
R.omit(names)(obj);
R.pipe({ a: 1, b: 2, c: 3, d: 4 }, R.omit(["a", "d"])); // => { b: 2, c: 3 }
Data First
R.omit(obj, names);
R.omit({ a: 1, b: 2, c: 3, d: 4 }, ["a", "d"]); // => { b: 2, c: 3 }

Creates a shallow copy of the data, and then removes any keys that the predicate rejects. Symbol keys are not passed to the predicate and would be passed through to the output as-is.

See pickBy for a complementary function which starts with an empty object and adds the entries that the predicate accepts. Because it is additive, symbol keys will not be passed through to the output object.

Data First
R.omitBy(data, predicate);
R.omitBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {a: 1, b: 2}
Data First
R.omitBy(data, predicate);
R.omitBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {a: 1, b: 2}
Data Last
R.omitBy(fn)(object);
R.omitBy((val, key) => key.toUpperCase() === key)({ a: 1, b: 2, A: 3, B: 4 }); // => {a: 1, b: 2}
Data First
R.omitBy(data, predicate);
R.omitBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {a: 1, b: 2}

Gets the value at path of object. If the resolved value is null or undefined, the defaultValue is returned in its place.

Data First
R.pathOr(object, array, defaultValue);
R.pathOr({ x: 10 }, ["y"], 2); // 2
R.pathOr({ y: 10 }, ["y"], 2); // 10
Data First
R.pathOr(object, array, defaultValue);
R.pathOr({ x: 10 }, ["y"], 2); // 2
R.pathOr({ y: 10 }, ["y"], 2); // 10
Data First
R.pathOr(object, array, defaultValue);
R.pathOr({ x: 10 }, ["y"], 2); // 2
R.pathOr({ y: 10 }, ["y"], 2); // 10
Data Last
R.pathOr(array, defaultValue)(object);
R.pipe({ x: 10 }, R.pathOr(["y"], 2)); // 2
R.pipe({ y: 10 }, R.pathOr(["y"], 2)); // 10
Data First
R.pathOr(object, array, defaultValue);
R.pathOr({ x: 10 }, ["y"], 2); // 2
R.pathOr({ y: 10 }, ["y"], 2); // 10
Data First
R.pathOr(object, array, defaultValue);
R.pathOr({ x: 10 }, ["y"], 2); // 2
R.pathOr({ y: 10 }, ["y"], 2); // 10

Creates an object composed of the picked data properties.

Data Last
R.pick([prop1, prop2])(object);
R.pipe({ a: 1, b: 2, c: 3, d: 4 }, R.pick(["a", "d"])); // => { a: 1, d: 4 }
Data First
R.pick(object, [prop1, prop2]);
R.pick({ a: 1, b: 2, c: 3, d: 4 }, ["a", "d"]); // => { a: 1, d: 4 }

Iterates over the entries of data and reconstructs the object using only entries that predicate accepts. Symbol keys are not passed to the predicate and would be filtered out from the output object.

See omitBy for a complementary function which starts with a shallow copy of the input object and removes the entries that the predicate rejects. Because it is subtractive symbol keys would be copied over to the output object. See also entries, filter, and fromEntries which could be used to build your own version of pickBy if you need more control (though the resulting type might be less precise).

Data First
R.pickBy(data, predicate);
R.pickBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {A: 3, B: 4}
Data First
R.pickBy(data, predicate);
R.pickBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {A: 3, B: 4}
Data Last
R.pickBy(predicate)(data);
R.pipe(
  { a: 1, b: 2, A: 3, B: 4 },
  pickBy((val, key) => key.toUpperCase() === key),
); // => {A: 3, B: 4}
Data First
R.pickBy(data, predicate);
R.pickBy({ a: 1, b: 2, A: 3, B: 4 }, (val, key) => key.toUpperCase() === key); // => {A: 3, B: 4}

Gets the value of the given property.

Data First
R.prop(data, key);
R.prop({ foo: "bar" }, "foo"); // => 'bar'
Data Last
R.prop(key)(data);
R.pipe({ foo: "bar" }, R.prop("foo")); // => 'bar'
Data First
R.prop(data, key);
R.prop({ foo: "bar" }, "foo"); // => 'bar'

pullObject

View source on GitHub

Creates an object that maps the result of valueExtractor with a key resulting from running keyExtractor on each item in data. Duplicate keys are overwritten, guaranteeing that the extractor functions are run on each item in data.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • indexBy - Builds an object from an array of values and a mapper for keys.
  • fromEntries - Builds an object from an array of key-value pairs.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.pullObject(data, keyExtractor, valueExtractor);
R.pullObject(
  [
    { name: "john", email: "john@remedajs.com" },
    { name: "jane", email: "jane@remedajs.com" },
  ],
  R.prop("name"),
  R.prop("email"),
); // => { john: "john@remedajs.com", jane: "jane@remedajs.com" }
Data Last
R.pullObject(keyExtractor, valueExtractor)(data);
R.pipe(
  [
    { name: "john", email: "john@remedajs.com" },
    { name: "jane", email: "jane@remedajs.com" },
  ],
  R.pullObject(R.prop("email"), R.prop("name")),
); // => { john: "john@remedajs.com", jane: "jane@remedajs.com" }

Sets the value at prop of object.

To add a new property to an object, or to override its type, use addProp instead, and to set a property within a nested object use setPath.

Data First
R.set(obj, prop, value);
R.set({ a: 1 }, "a", 2); // => { a: 2 }
Data Last
R.set(prop, value)(obj);
R.pipe({ a: 1 }, R.set("a", 2)); // => { a: 2 }

Sets the value at path of object.

For simple cases where the path is only one level deep, prefer set instead.

Data First
R.setPath(obj, path, value);
R.setPath({ a: { b: 1 } }, ["a", "b"], 2); // => { a: { b: 2 } }
Data Last
R.setPath(path, value)(obj);
R.pipe({ a: { b: 1 } }, R.setPath(["a", "b"], 2)); // { a: { b: 2 } }

Swaps the positions of two properties in an object based on the provided keys.

Data First
swap(data, key1, key2);
swap({ a: 1, b: 2, c: 3 }, "a", "b"); // => {a: 2, b: 1, c: 3}
Data Last
swap(key1, key2)(data);
swap("a", "b")({ a: 1, b: 2, c: 3 }); // => {a: 2, b: 1, c: 3}

Returns a new array containing the values of the array or object.

Data First
R.values(source);
R.values(["x", "y", "z"]); // => ['x', 'y', 'z']
R.values({ a: "x", b: "y", c: "z" }); // => ['x', 'y', 'OOz']
Data Last
R.values()(source);
R.pipe(["x", "y", "z"], R.values()); // => ['x', 'y', 'z']
R.pipe({ a: "x", b: "y", c: "z" }, R.values()); // => ['x', 'y', 'z']
R.pipe({ a: "x", b: "y", c: "z" }, R.values(), R.first()); // => 'x'

Determines whether all predicates returns true for the input data.

Data First
R.allPass(data, fns);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.allPass(12, fns); // => true
R.allPass(8, fns); // => false
Data Last
R.allPass(fns)(data);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.allPass(fns)(12); // => true
R.allPass(fns)(8); // => false

Determines whether any predicate returns true for the input data.

Data First
R.anyPass(data, fns);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.anyPass(8, fns); // => true
R.anyPass(11, fns); // => false
Data Last
R.anyPass(fns)(data);
const isDivisibleBy3 = (x: number) => x % 3 === 0;
const isDivisibleBy4 = (x: number) => x % 4 === 0;
const fns = [isDivisibleBy3, isDivisibleBy4];
R.anyPass(fns)(8); // => true
R.anyPass(fns)(11); // => false

Split an array into groups the length of size. If array can't be split evenly, the final chunk will be the remaining elements.

Data First
R.chunk(array, size);
R.chunk(["a", "b", "c", "d"], 2); // => [['a', 'b'], ['c', 'd']]
R.chunk(["a", "b", "c", "d"], 3); // => [['a', 'b', 'c'], ['d']]
Data Last
R.chunk(size)(array);
R.chunk(2)(["a", "b", "c", "d"]); // => [['a', 'b'], ['c', 'd']]
R.chunk(3)(["a", "b", "c", "d"]); // => [['a', 'b', 'c'], ['d']]

Merge two or more arrays. This method does not change the existing arrays, but instead returns a new array, even if the other array is empty.

Data First
R.concat(data, other);
R.concat([1, 2, 3], ["a"]); // [1, 2, 3, 'a']
Data Last
R.concat(arr2)(arr1);
R.concat(["a"])([1, 2, 3]); // [1, 2, 3, 'a']

Categorize and count elements in an array using a defined callback function. The callback function is applied to each element in the array to determine its category and then counts how many elements fall into each category.

Data First
R.countBy(data, categorizationFn);
R.countBy(["a", "b", "c", "B", "A", "a"], R.toLowerCase()); //=> { a: 3, b: 2, c: 1 }
Data Last
R.countBy(categorizationFn)(data);
R.pipe(["a", "b", "c", "B", "A", "a"], R.countBy(R.toLowerCase())); //=> { a: 3, b: 2, c: 1 }

difference

Lazy
View source on GitHub

Excludes the values from other array. The output maintains the same order as the input. The inputs are treated as multi-sets/bags (multiple copies of items are treated as unique items).

Data First
R.difference(data, other);
R.difference([1, 2, 3, 4], [2, 5, 3]); // => [1, 4]
R.difference([1, 1, 2, 2], [1]); // => [1, 2, 2]
Data First
R.difference(other)(data);
R.pipe([1, 2, 3, 4], R.difference([2, 5, 3])); // => [1, 4]
R.pipe([1, 1, 2, 2], R.difference([1])); // => [1, 2, 2]

differenceWith

Lazy
View source on GitHub

Excludes the values from other array. Elements are compared by custom comparator isEquals.

Data First
R.differenceWith(array, other, isEquals);
R.differenceWith(
  [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 4 }],
  [{ a: 2 }, { a: 5 }, { a: 3 }],
  R.equals,
); // => [{a: 1}, {a: 4}]
Data Last
R.differenceWith(other, isEquals)(array);
R.differenceWith(
  [{ a: 2 }, { a: 5 }, { a: 3 }],
  R.equals,
)([{ a: 1 }, { a: 2 }, { a: 3 }, { a: 4 }]); // => [{a: 1}, {a: 4}]
R.pipe(
  [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 4 }, { a: 5 }, { a: 6 }], // only 4 iterations
  R.differenceWith([{ a: 2 }, { a: 3 }], R.equals),
  R.take(2),
); // => [{a: 1}, {a: 4}]

Removes first n elements from the array.

Data First
R.drop(array, n);
R.drop([1, 2, 3, 4, 5], 2); // => [3, 4, 5]
Data Last
R.drop(n)(array);
R.drop(2)([1, 2, 3, 4, 5]); // => [3, 4, 5]

dropFirstBy

View source on GitHub

Drop the first n items from data based on the provided ordering criteria. This allows you to avoid sorting the array before dropping the items. The complexity of this function is O(Nlogn) where N is the length of the array.

For the opposite operation (to keep n elements) see takeFirstBy.

Data First
R.dropFirstBy(data, n, ...rules);
R.dropFirstBy(["aa", "aaaa", "a", "aaa"], 2, (x) => x.length); // => ['aaa', 'aaaa']
Data Last
R.dropFirstBy(n, ...rules)(data);
R.pipe(
  ["aa", "aaaa", "a", "aaa"],
  R.dropFirstBy(2, (x) => x.length),
); // => ['aaa', 'aaaa']

Removes last n elements from the array.

Data First
R.dropLast(array, n);
R.dropLast([1, 2, 3, 4, 5], 2); // => [1, 2, 3]
Data Last
R.dropLast(n)(array);
R.dropLast(2)([1, 2, 3, 4, 5]); // => [1, 2, 3]

dropLastWhile

View source on GitHub

Removes elements from the end of the array until the predicate returns false.

The predicate is applied to each element in the array starting from the end and moving towards the beginning, until the predicate returns false. The returned array includes elements from the beginning of the array, up to and including the element that produced false for the predicate.

Data First
R.dropLastWhile(data, predicate);
R.dropLastWhile([1, 2, 10, 3, 4], (x) => x < 10); // => [1, 2, 10]
Data Last
R.dropLastWhile(predicate)(data);
R.pipe(
  [1, 2, 10, 3, 4],
  R.dropLastWhile((x) => x < 10),
); // => [1, 2, 10]

Removes elements from the beginning of the array until the predicate returns false.

The predicate is applied to each element in the array, until the predicate returns false. The returned array includes the rest of the elements, starting with the element that produced false for the predicate.

Data First
R.dropWhile(data, predicate);
R.dropWhile([1, 2, 10, 3, 4], (x) => x < 10); // => [10, 3, 4]
Data Last
R.dropWhile(predicate)(data);
R.pipe(
  [1, 2, 10, 3, 4],
  R.dropWhile((x) => x < 10),
); // => [10, 3, 4]

Creates a shallow copy of a portion of a given array, filtered down to just the elements from the given array that pass the test implemented by the provided function. Equivalent to Array.prototype.filter.

Data First
R.filter(data, predicate);
R.filter([1, 2, 3], (x) => x % 2 === 1); // => [1, 3]
Data First
R.filter(data, predicate);
R.filter([1, 2, 3], (x) => x % 2 === 1); // => [1, 3]
Data Last
R.filter(predicate)(data);
R.pipe(
  [1, 2, 3],
  R.filter((x) => x % 2 === 1),
); // => [1, 3]
Data First
R.filter(data, predicate);
R.filter([1, 2, 3], (x) => x % 2 === 1); // => [1, 3]

Returns the first element in the provided array that satisfies the provided testing function. If no values satisfy the testing function, undefined is returned.

Similar functions:

  • findLast - If you need the last element that satisfies the provided testing function.
  • findIndex - If you need the index of the found element in the array.
  • indexOf - If you need to find the index of a value.
  • includes - If you need to find if a value exists in an array.
  • some - If you need to find if any element satisfies the provided testing function.
  • filter - If you need to find all elements that satisfy the provided testing function.
Data First
R.find(data, predicate);
R.find([1, 3, 4, 6], (n) => n % 2 === 0); // => 4
Data First
R.find(data, predicate);
R.find([1, 3, 4, 6], (n) => n % 2 === 0); // => 4
Data Last
R.find(predicate)(data);
R.pipe(
  [1, 3, 4, 6],
  R.find((n) => n % 2 === 0),
); // => 4
Data First
R.find(data, predicate);
R.find([1, 3, 4, 6], (n) => n % 2 === 0); // => 4

Returns the index of the first element in an array that satisfies the provided testing function. If no elements satisfy the testing function, -1 is returned.

See also the find method, which returns the first element that satisfies the testing function (rather than its index).

Data First
R.findIndex(data, predicate);
R.findIndex([1, 3, 4, 6], (n) => n % 2 === 0); // => 2
Data Last
R.findIndex(predicate)(data);
R.pipe(
  [1, 3, 4, 6],
  R.findIndex((n) => n % 2 === 0),
); // => 2

Iterates the array in reverse order and returns the value of the first element that satisfies the provided testing function. If no elements satisfy the testing function, undefined is returned.

Similar functions:

  • find - If you need the first element that satisfies the provided testing function.
  • findLastIndex - If you need the index of the found element in the array.
  • lastIndexOf - If you need to find the index of a value.
  • includes - If you need to find if a value exists in an array.
  • some - If you need to find if any element satisfies the provided testing function.
  • filter - If you need to find all elements that satisfy the provided testing function.
Data First
R.findLast(data, predicate);
R.findLast([1, 3, 4, 6], (n) => n % 2 === 1); // => 3
Data First
R.findLast(data, predicate);
R.findLast([1, 3, 4, 6], (n) => n % 2 === 1); // => 3
Data Last
R.findLast(predicate)(data);
R.pipe(
  [1, 3, 4, 6],
  R.findLast((n) => n % 2 === 1),
); // => 3
Data First
R.findLast(data, predicate);
R.findLast([1, 3, 4, 6], (n) => n % 2 === 1); // => 3

findLastIndex

View source on GitHub

Iterates the array in reverse order and returns the index of the first element that satisfies the provided testing function. If no elements satisfy the testing function, -1 is returned.

See also findLast which returns the value of last element that satisfies the testing function (rather than its index).

Data First
R.findLastIndex(data, predicate);
R.findLastIndex([1, 3, 4, 6], (n) => n % 2 === 1); // => 1
Data Last
R.findLastIndex(fn)(items);
R.pipe(
  [1, 3, 4, 6],
  R.findLastIndex((n) => n % 2 === 1),
); // => 1

Gets the first element of array.

Data First
R.first(array);
R.first([1, 2, 3]); // => 1
R.first([]); // => undefined
Data Last
R.first()(array);
R.pipe(
  [1, 2, 4, 8, 16],
  R.filter((x) => x > 3),
  R.first(),
  (x) => x + 1,
); // => 5

Find the first element in the array that adheres to the order rules provided. This is a superset of what a typical maxBy or minBy function would do as it allows defining "tie-breaker" rules when values are equal, and allows comparing items using any logic. This function is equivalent to calling R.first(R.sortBy(...)) but runs at O(n) instead of O(nlogn).

Use nthBy if you need an element other that the first, or takeFirstBy if you more than just the first element.

Data Last
R.firstBy(...rules)(data);
const max = R.pipe([1, 2, 3], R.firstBy([R.identity(), "desc"])); // => 3;
const min = R.pipe([1, 2, 3], R.firstBy(R.identity())); // => 1;

const data = [{ a: "a" }, { a: "aa" }, { a: "aaa" }] as const;
const maxBy = R.pipe(data, R.firstBy([(item) => item.a.length, "desc"])); // => { a: "aaa" };
const minBy = R.pipe(
  data,
  R.firstBy((item) => item.a.length),
); // => { a: "a" };

const data = [
  { type: "cat", size: 1 },
  { type: "cat", size: 2 },
  { type: "dog", size: 3 },
] as const;
const multi = R.pipe(data, R.firstBy(R.prop("type"), [R.prop("size"), "desc"])); // => {type: "cat", size: 2}
Data First
R.firstBy(data, ...rules);
const max = R.firstBy([1, 2, 3], [R.identity(), "desc"]); // => 3;
const min = R.firstBy([1, 2, 3], R.identity()); // => 1;

const data = [{ a: "a" }, { a: "aa" }, { a: "aaa" }] as const;
const maxBy = R.firstBy(data, [(item) => item.a.length, "desc"]); // => { a: "aaa" };
const minBy = R.firstBy(data, (item) => item.a.length); // => { a: "a" };

const data = [
  { type: "cat", size: 1 },
  { type: "cat", size: 2 },
  { type: "dog", size: 3 },
] as const;
const multi = R.firstBy(data, R.prop("type"), [R.prop("size"), "desc"]); // => {type: "cat", size: 2}

Creates a new array with all sub-array elements concatenated into it recursively up to the specified depth. Equivalent to the built-in Array.prototype.flat method.

Data First
R.flat(data);
R.flat(data, depth);
R.flat([[1, 2], [3, 4], [5], [[6]]]); // => [1, 2, 3, 4, 5, [6]]
R.flat([[[1]], [[2]]], 2); // => [1, 2]
Data Last
R.flat()(data);
R.flat(depth)(data);
R.pipe([[1, 2], [3, 4], [5], [[6]]], R.flat()); // => [1, 2, 3, 4, 5, [6]]
R.pipe([[[1]], [[2]]], R.flat(2)); // => [1, 2]

flatMap

Lazy
View source on GitHub

Returns a new array formed by applying a given callback function to each element of the array, and then flattening the result by one level. It is identical to a map followed by a flat of depth 1 (flat(map(data, ...args))), but slightly more efficient than calling those two methods separately. Equivalent to Array.prototype.flatMap.

Data First
R.flatMap(data, callbackfn);
R.flatMap([1, 2, 3], (x) => [x, x * 10]); // => [1, 10, 2, 20, 3, 30]
Data Last
R.flatMap(callbackfn)(data);
R.pipe(
  [1, 2, 3],
  R.flatMap((x) => [x, x * 10]),
); // => [1, 10, 2, 20, 3, 30]

forEach

Lazy
View source on GitHub

Executes a provided function once for each array element. Equivalent to Array.prototype.forEach.

The dataLast version returns the original array (instead of not returning anything (void)) to allow using it in a pipe. When not used in a pipe the returned array is equal to the input array (by reference), and not a shallow copy of it!

Data First
R.forEach(data, callbackfn);
R.forEach([1, 2, 3], (x) => {
  console.log(x);
});
Data Last
R.forEach(callbackfn)(data);
R.pipe(
  [1, 2, 3],
  R.forEach((x) => {
    console.log(x);
  }),
); // => [1, 2, 3]

Groups the elements of a given iterable according to the string values returned by a provided callback function. The returned object has separate properties for each group, containing arrays with the elements in the group. Unlike the built in Object.groupBy this function also allows the callback to return undefined in order to exclude the item from being added to any group.

Data First
R.groupBy(data, callbackfn);
R.groupBy([{ a: "cat" }, { a: "dog" }] as const, R.prop("a")); // => {cat: [{a: 'cat'}], dog: [{a: 'dog'}]}
R.groupBy([0, 1], (x) => (x % 2 === 0 ? "even" : undefined)); // => {even: [0]}
Data Last
R.groupBy(callbackfn)(data);
R.pipe([{ a: "cat" }, { a: "dog" }] as const, R.groupBy(R.prop("a"))); // => {cat: [{a: 'cat'}], dog: [{a: 'dog'}]}
R.pipe(
  [0, 1],
  R.groupBy((x) => (x % 2 === 0 ? "even" : undefined)),
); // => {even: [0]}

Checks if the given array has at least the defined number of elements. When the minimum used is a literal (e.g. 3) the output is refined accordingly so that those indices are defined when accessing the array even when using typescript's 'noUncheckedIndexAccess'.

Data First
R.hasAtLeast(data, minimum);
R.hasAtLeast([], 4); // => false

const data: number[] = [1, 2, 3, 4];
R.hasAtLeast(data, 1); // => true
data[0]; // 1, with type `number`
Data First
R.hasAtLeast(data, minimum);
R.hasAtLeast([], 4); // => false

const data: number[] = [1, 2, 3, 4];
R.hasAtLeast(data, 1); // => true
data[0]; // 1, with type `number`
Data Last
R.hasAtLeast(minimum)(data);
R.pipe([], R.hasAtLeast(4)); // => false

const data = [[1, 2], [3], [4, 5]];
R.pipe(
  data,
  R.filter(R.hasAtLeast(2)),
  R.map(([, second]) => second),
); // => [2,5], with type `number[]`
Data First
R.hasAtLeast(data, minimum);
R.hasAtLeast([], 4); // => false

const data: number[] = [1, 2, 3, 4];
R.hasAtLeast(data, 1); // => true
data[0]; // 1, with type `number`

Converts a list of objects into an object indexing the objects by the given key.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • fromEntries - Builds an object from an array of key-value pairs.
  • mapToObj - Builds an object from an array of items and a single mapper for key-value pairs. Refer to the docs for more details.
Data First
R.indexBy(array, fn);
R.indexBy(["one", "two", "three"], (x) => x.length); // => {3: 'two', 5: 'three'}
Data Last
R.indexBy(fn)(array);
R.pipe(
  ["one", "two", "three"],
  R.indexBy((x) => x.length),
); // => {3: 'two', 5: 'three'}

intersection

Lazy
View source on GitHub

Returns a list of elements that exist in both array. The output maintains the same order as the input. The inputs are treated as multi-sets/bags (multiple copies of items are treated as unique items).

Data First
R.intersection(data, other);
R.intersection([1, 2, 3], [2, 3, 5]); // => [2, 3]
R.intersection([1, 1, 2, 2], [1]); // => [1]
Data First
R.intersection(other)(data);
R.pipe([1, 2, 3], R.intersection([2, 3, 5])); // => [2, 3]
R.pipe([1, 1, 2, 2], R.intersection([1])); // => [1]

intersectionWith

Lazy
View source on GitHub

Returns a list of intersecting values based on a custom comparator function that compares elements of both arrays.

Data First
R.intersectionWith(array, other, comparator);
R.intersectionWith(
  [
    { id: 1, name: "Ryan" },
    { id: 3, name: "Emma" },
  ],
  [3, 5],
  (a, b) => a.id === b,
); // => [{ id: 3, name: 'Emma' }]
Data Last
R.intersectionWith(other, comparator)(array);
R.intersectionWith(
  [3, 5],
  (a, b) => a.id === b,
)([
  { id: 1, name: "Ryan" },
  { id: 3, name: "Emma" },
]); // => [{ id: 3, name: 'Emma' }]

Joins the elements of the array by: casting them to a string and concatenating them one to the other, with the provided glue string in between every two elements.

When called on a tuple and with stricter item types (union of literal values, the result is strictly typed to the tuples shape and it's item types).

Data First
R.join(data, glue);
R.join([1, 2, 3], ","); // => "1,2,3" (typed `string`)
R.join(["a", "b", "c"], ""); // => "abc" (typed `string`)
R.join(["hello", "world"] as const, " "); // => "hello world" (typed `hello world`)
Data Last
R.join(glue)(data);
R.pipe([1, 2, 3], R.join(",")); // => "1,2,3" (typed `string`)
R.pipe(["a", "b", "c"], R.join("")); // => "abc" (typed `string`)
R.pipe(["hello", "world"] as const, R.join(" ")); // => "hello world" (typed `hello world`)

Gets the last element of array.

Data First
R.last(array);
R.last([1, 2, 3]); // => 3
R.last([]); // => undefined
Data Last
R.last()(array);
R.pipe(
  [1, 2, 4, 8, 16],
  R.filter((x) => x > 3),
  R.last(),
  (x) => x + 1,
); // => 17

Counts values of the collection or iterable.

Data First
R.length(array);
R.length([1, 2, 3]); // => 3
Data Last
R.length()(array);
R.pipe([1, 2, 3], R.length()); // => 3

Creates a new array populated with the results of calling a provided function on every element in the calling array. Equivalent to Array.prototype.map.

Data First
R.map(data, callbackfn);
R.map([1, 2, 3], R.multiply(2)); // => [2, 4, 6]
R.map([0, 0], R.add(1)); // => [1, 1]
R.map([0, 0], (value, index) => value + index); // => [0, 1]
Data Last
R.map(callbackfn)(data);
R.pipe([1, 2, 3], R.map(R.multiply(2))); // => [2, 4, 6]
R.pipe([0, 0], R.map(R.add(1))); // => [1, 1]
R.pipe(
  [0, 0],
  R.map((value, index) => value + index),
); // => [0, 1]

Map each element of an array into an object using a defined callback function.

There are several other functions that could be used to build an object from an array:

  • fromKeys - Builds an object from an array of keys and a mapper for values.
  • indexBy - Builds an object from an array of values and a mapper for keys.
  • pullObject - Builds an object from an array of items with mappers for both keys and values.
  • fromEntries - Builds an object from an array of key-value pairs. Refer to the docs for more details.
Data First
R.mapToObj(array, fn);
R.mapToObj([1, 2, 3], (x) => [String(x), x * 2]); // => {1: 2, 2: 4, 3: 6}
Data Last
R.mapToObj(fn)(array);
R.pipe(
  [1, 2, 3],
  R.mapToObj((x) => [String(x), x * 2]),
); // => {1: 2, 2: 4, 3: 6}

mapWithFeedback

Lazy
View source on GitHub

Applies a function on each element of the array, using the result of the previous application, and returns an array of the successively computed values.

Data First
R.mapWithFeedback(data, callbackfn, initialValue);
R.mapWithFeedback([1, 2, 3, 4, 5], (prev, x) => prev + x, 100); // => [101, 103, 106, 110, 115]
Data Last
R.mapWithFeedback(callbackfn, initialValue)(data);
R.pipe(
  [1, 2, 3, 4, 5],
  R.mapWithFeedback((prev, x) => prev + x, 100),
); // => [101, 103, 106, 110, 115]

Returns the mean of the elements of an array using the provided predicate.

Data Last
R.meanBy(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.meanBy((x) => x.a),
); // 3
Data First
R.meanBy(array, fn);
R.meanBy([{ a: 5 }, { a: 1 }, { a: 3 }], (x) => x.a); // 3

Merges a list of objects into a single object.

R.mergeAll(objects);
R.mergeAll([{ a: 1, b: 1 }, { b: 2, c: 3 }, { d: 10 }]); // => { a: 1, b: 2, c: 3, d: 10 }
R.mergeAll(objects);
R.mergeAll([{ a: 1, b: 1 }, { b: 2, c: 3 }, { d: 10 }]); // => { a: 1, b: 2, c: 3, d: 10 }
R.mergeAll(objects);
R.mergeAll([{ a: 1, b: 1 }, { b: 2, c: 3 }, { d: 10 }]); // => { a: 1, b: 2, c: 3, d: 10 }
R.mergeAll(objects);
R.mergeAll([{ a: 1, b: 1 }, { b: 2, c: 3 }, { d: 10 }]); // => { a: 1, b: 2, c: 3, d: 10 }
R.mergeAll(objects);
R.mergeAll([{ a: 1, b: 1 }, { b: 2, c: 3 }, { d: 10 }]); // => { a: 1, b: 2, c: 3, d: 10 }
R.mergeAll(objects);
R.mergeAll([{ a: 1, b: 1 }, { b: 2, c: 3 }, { d: 10 }]); // => { a: 1, b: 2, c: 3, d: 10 }

Retrieves the element that would be at the given index if the array were sorted according to specified rules. This function uses the QuickSelect algorithm running at an average complexity of O(n). Semantically it is equivalent to sortBy(data, ...rules).at(index) which would run at O(nlogn).

See also firstBy which provides an even more efficient algorithm and a stricter return type, but only for index === 0. See takeFirstBy to get all the elements up to and including index.

Data First
R.nthBy(data, index, ...rules);
R.nthBy([2, 1, 4, 5, 3], 2, identity()); // => 3
Data Last
R.nthBy(index, ...rules)(data);
R.pipe([2, 1, 4, 5, 3], R.nthBy(2, identity())); // => 3

Returns the first and only element of array, or undefined otherwise.

Data First
R.only(array);
R.only([]); // => undefined
R.only([1]); // => 1
R.only([1, 2]); // => undefined
Data Last
R.only()(array);
R.pipe([], R.only()); // => undefined
R.pipe([1], R.only()); // => 1
R.pipe([1, 2], R.only()); // => undefined

Splits a collection into two groups, the first of which contains elements the predicate type guard passes, and the second one containing the rest.

Data First
R.partition(data, predicate);
R.partition(["one", "two", "forty two"], (x) => x.length === 3); // => [['one', 'two'], ['forty two']]
Data First
R.partition(data, predicate);
R.partition(["one", "two", "forty two"], (x) => x.length === 3); // => [['one', 'two'], ['forty two']]
Data Last
R.partition(predicate)(data);
R.pipe(
  ["one", "two", "forty two"],
  R.partition((x) => x.length === 3),
); // => [['one', 'two'], ['forty two']]
Data First
R.partition(data, predicate);
R.partition(["one", "two", "forty two"], (x) => x.length === 3); // => [['one', 'two'], ['forty two']]

Returns a list of numbers from start (inclusive) to end (exclusive).

Data First
range(start, end);
R.range(1, 5); // => [1, 2, 3, 4]
Data Last
range(end)(start);
R.range(5)(1); // => [1, 2, 3, 4]

Calculates the rank of an item in an array based on rules. The rank is the position where the item would appear in the sorted array. This function provides an efficient way to determine the rank in O(n) time, compared to O(nlogn) for the equivalent sortedIndex(sortBy(data, ...rules), item).

Data First
R.rankBy(data, item, ...rules);
const DATA = [{ a: 5 }, { a: 1 }, { a: 3 }] as const;
R.rankBy(DATA, 0, R.prop("a")); // => 0
R.rankBy(DATA, 1, R.prop("a")); // => 1
R.rankBy(DATA, 2, R.prop("a")); // => 1
R.rankBy(DATA, 3, R.prop("a")); // => 2
Data Last
R.rankBy(item, ...rules)(data);
const DATA = [{ a: 5 }, { a: 1 }, { a: 3 }] as const;
R.pipe(DATA, R.rankBy(0, R.prop("a"))); // => 0
R.pipe(DATA, R.rankBy(1, R.prop("a"))); // => 1
R.pipe(DATA, R.rankBy(2, R.prop("a"))); // => 1
R.pipe(DATA, R.rankBy(3, R.prop("a"))); // => 2

Executes a user-supplied "reducer" callback function on each element of the array, in order, passing in the return value from the calculation on the preceding element. The final result of running the reducer across all elements of the array is a single value. Equivalent to Array.prototype.reduce.

Data First
R.reduce(data, callbackfn, initialValue);
R.reduce([1, 2, 3, 4, 5], (acc, x) => acc + x, 100); // => 115
Data Last
R.reduce(fn, initialValue)(array);
R.pipe(
  [1, 2, 3, 4, 5],
  R.reduce((acc, x) => acc + x, 100),
); // => 115

Reverses array.

Data First
R.reverse(arr);
R.reverse([1, 2, 3]); // [3, 2, 1]
Data Last
R.reverse()(array);
R.reverse()([1, 2, 3]); // [3, 2, 1]

Returns a random subset of size sampleSize from array.

Maintains and infers most of the typing information that could be passed along to the output. This means that when using tuples, the output will be a tuple too, and when using literals, those literals would be preserved.

The items in the result are kept in the same order as they are in the input. If you need to get a shuffled response you can pipe the shuffle function after this one.

Data First
R.sample(array, sampleSize);
R.sample(["hello", "world"], 1); // => ["hello"] // typed string[]
R.sample(["hello", "world"] as const, 1); // => ["world"] // typed ["hello" | "world"]
Data Last
R.sample(sampleSize)(array);
R.sample(1)(["hello", "world"]); // => ["hello"] // typed string[]
R.sample(1)(["hello", "world"] as const); // => ["world"] // typed ["hello" | "world"]

Shuffles the input array, returning a new array with the same elements in a random order.

Data First
R.shuffle(array);
R.shuffle([4, 2, 7, 5]); // => [7, 5, 4, 2]
Data Last
R.shuffle()(array);
R.pipe([4, 2, 7, 5], R.shuffle()); // => [7, 5, 4, 2]

Sorts an array. The comparator function should accept two values at a time and return a negative number if the first value is smaller, a positive number if it's larger, and zero if they are equal. Sorting is based on a native sort function.

Data First
R.sort(items, cmp);
R.sort([4, 2, 7, 5], (a, b) => a - b); // => [2, 4, 5, 7]
Data Last
R.sort(cmp)(items);
R.pipe(
  [4, 2, 7, 5],
  R.sort((a, b) => a - b),
); // => [2, 4, 5, 7]

Sorts data using the provided ordering rules. The sort is done via the native Array.prototype.sort but is performed on a shallow copy of the array to avoid mutating the original data.

There are several other functions that take order rules and bypass the need to sort the array first (in O(nlogn) time):

  • firstBy === first(sortBy(data, ...rules)), O(n).
  • takeFirstBy === take(sortBy(data, ...rules), k), O(nlogk).
  • dropFirstBy === drop(sortBy(data, ...rules), k), O(nlogk).
  • nthBy === sortBy(data, ...rules).at(k), O(n).
  • rankBy === sortedIndex(sortBy(data, ...rules), item), O(n). Refer to the docs for more details.
Data Last
R.sortBy(...rules)(data);
R.pipe([{ a: 1 }, { a: 3 }, { a: 7 }, { a: 2 }], R.sortBy(R.prop("a"))); // => [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 7 }]
Data First
R.sortBy(data, ...rules);
R.sortBy([{ a: 1 }, { a: 3 }, { a: 7 }, { a: 2 }], prop("a")); // => [{ a: 1 }, { a: 2 }, { a: 3 }, { a: 7 }]
R.sortBy(
  [
    { color: "red", weight: 2 },
    { color: "blue", weight: 3 },
    { color: "green", weight: 1 },
    { color: "purple", weight: 1 },
  ],
  [prop("weight"), "asc"],
  prop("color"),
); // => [
//   {color: 'green', weight: 1},
//   {color: 'purple', weight: 1},
//   {color: 'red', weight: 2},
//   {color: 'blue', weight: 3},
// ]

sortedIndex

View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order; so that splice(sortedIndex, 0, item) would result in maintaining the array's sort-ness. The array can contain duplicates. If the item already exists in the array the index would be of the first occurrence of the item.

Runs in O(logN) time.

Data First
R.sortedIndex(data, item);
R.sortedIndex(["a", "a", "b", "c", "c"], "c"); // => 3
Data Last
R.sortedIndex(item)(data);
R.pipe(["a", "a", "b", "c", "c"], R.sortedIndex("c")); // => 3

sortedIndexBy

View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order using a value function; so that splice(sortedIndex, 0, item) would result in maintaining the arrays sort- ness. The array can contain duplicates. If the item already exists in the array the index would be of the first occurrence of the item.

Runs in O(logN) time.

See also:

  • findIndex - scans a possibly unsorted array in-order (linear search).
  • sortedIndex - like this function, but doesn't take a callbackfn.
  • sortedLastIndexBy - like this function, but finds the last suitable index.
  • sortedLastIndex - like sortedIndex, but finds the last suitable index.
  • rankBy - scans a possibly unsorted array in-order, returning the index based on a sorting criteria.
Data First
R.sortedIndexBy(data, item, valueFunction);
R.sortedIndexBy([{ age: 20 }, { age: 22 }], { age: 21 }, prop("age")); // => 1
Data Last
R.sortedIndexBy(data, item, valueFunction);
R.sortedIndexBy([{ age: 20 }, { age: 22 }], { age: 21 }, prop("age")); // => 1

sortedIndexWith

View source on GitHub

Performs a binary search for the index of the item at which the predicate stops returning true. This function assumes that the array is "sorted" in regards to the predicate, meaning that running the predicate as a mapper on it would result in an array [...true[], ...false[]]. This stricter requirement from the predicate provides us 2 benefits over findIndex which does a similar thing:

  1. It would run at O(logN) time instead of O(N) time.
  2. It always returns a value (it would return data.length if the predicate returns true for all items).

This function is the basis for all other sortedIndex functions which search for a specific item in a sorted array, and it could be used to perform similar efficient searches.

See also:

  • findIndex - scans a possibly unsorted array in-order (linear search).
  • rankBy - scans a possibly unsorted array in-order, returning the index based on a sorting criteria.
Data First
R.sortedIndexWith(data, predicate);
R.sortedIndexWith(["a", "ab", "abc"], (item) => item.length < 2); // => 1
Data Last
R.sortedIndexWith(predicate)(data);
R.pipe(
  ["a", "ab", "abc"],
  R.sortedIndexWith((item) => item.length < 2),
); // => 1

sortedLastIndex

View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order; so that splice(sortedIndex, 0, item) would result in maintaining the array's sort-ness. The array can contain duplicates. If the item already exists in the array the index would be of the last occurrence of the item.

Runs in O(logN) time.

Data First
R.sortedLastIndex(data, item);
R.sortedLastIndex(["a", "a", "b", "c", "c"], "c"); // => 5
Data Last
R.sortedLastIndex(item)(data);
R.pipe(["a", "a", "b", "c", "c"], sortedLastIndex("c")); // => 5

sortedLastIndexBy

View source on GitHub

Find the insertion position (index) of an item in an array with items sorted in ascending order using a value function; so that splice(sortedIndex, 0, item) would result in maintaining the arrays sort- ness. The array can contain duplicates. If the item already exists in the array the index would be of the last occurrence of the item.

Runs in O(logN) time.

See also:

  • findIndex - scans a possibly unsorted array in-order (linear search).
  • sortedLastIndex - a simplified version of this function, without a callbackfn.
  • sortedIndexBy - like this function, but returns the first suitable index.
  • sortedIndex - like sortedLastIndex but without a callbackfn.
  • rankBy - scans a possibly unsorted array in-order, returning the index based on a sorting criteria.
Data First
R.sortedLastIndexBy(data, item, valueFunction);
R.sortedLastIndexBy([{ age: 20 }, { age: 22 }], { age: 21 }, prop("age")); // => 1
Data Last
R.sortedLastIndexBy(item, valueFunction)(data);
R.pipe([{ age: 20 }, { age: 22 }], sortedLastIndexBy({ age: 21 }, prop("age"))); // => 1

Removes elements from an array and, inserts new elements in their place.

Data First
R.splice(items, start, deleteCount, replacement);
R.splice([1, 2, 3, 4, 5, 6, 7, 8], 2, 3, []); //=> [1,2,6,7,8]
R.splice([1, 2, 3, 4, 5, 6, 7, 8], 2, 3, [9, 10]); //=> [1,2,9,10,6,7,8]
Data Last
R.splice(start, deleteCount, replacement)(items);
R.pipe([1, 2, 3, 4, 5, 6, 7, 8], R.splice(2, 3, [])); // => [1,2,6,7,8]
R.pipe([1, 2, 3, 4, 5, 6, 7, 8], R.splice(2, 3, [9, 10])); // => [1,2,9,10,6,7,8]

Splits a given array at a given index.

Data First
R.splitAt(array, index);
R.splitAt([1, 2, 3], 1); // => [[1], [2, 3]]
R.splitAt([1, 2, 3, 4, 5], -1); // => [[1, 2, 3, 4], [5]]
Data Last
R.splitAt(index)(array);
R.splitAt(1)([1, 2, 3]); // => [[1], [2, 3]]
R.splitAt(-1)([1, 2, 3, 4, 5]); // => [[1, 2, 3, 4], [5]]

Splits a given array at the first index where the given predicate returns true.

Data First
R.splitWhen(array, fn);
R.splitWhen([1, 2, 3], (x) => x === 2); // => [[1], [2, 3]]
Data Last
R.splitWhen(fn)(array);
R.splitWhen((x) => x === 2)([1, 2, 3]); // => [[1], [2, 3]]

Returns the sum of the elements of an array using the provided mapper.

Works for both number and bigint mappers, but not mappers that return both types.

IMPORTANT: The result for empty arrays would be 0 (number) regardless of the type of the mapper; to avoid adding this to the return type for cases where the array is known to be non-empty you can use hasAtLeast or isEmpty to guard against this case.

Data Last
R.sumBy(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.sumBy((x) => x.a),
); // 9

R.pipe(
  [{ a: 5n }, { a: 1n }, { a: 3n }],
  R.sumBy((x) => x.a),
); // 9n
Data Last
R.sumBy(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.sumBy((x) => x.a),
); // 9

R.pipe(
  [{ a: 5n }, { a: 1n }, { a: 3n }],
  R.sumBy((x) => x.a),
); // 9n
Data First
R.sumBy(array, fn);
R.sumBy([{ a: 5 }, { a: 1 }, { a: 3 }], (x) => x.a); // 9
R.sumBy([{ a: 5n }, { a: 1n }, { a: 3n }], (x) => x.a); // 9n
Data Last
R.sumBy(fn)(array);
R.pipe(
  [{ a: 5 }, { a: 1 }, { a: 3 }],
  R.sumBy((x) => x.a),
); // 9

R.pipe(
  [{ a: 5n }, { a: 1n }, { a: 3n }],
  R.sumBy((x) => x.a),
); // 9n

swapIndices

View source on GitHub

Swaps the positions of two elements in an array or string at the provided indices.

Negative indices are supported and would be treated as an offset from the end of the array. The resulting type thought would be less strict than when using positive indices.

If either index is out of bounds the result would be a shallow copy of the input, as-is.

Data First
swapIndices(data, index1, index2);
swapIndices(["a", "b", "c"], 0, 1); // => ['b', 'a', 'c']
swapIndices(["a", "b", "c"], 1, -1); // => ['c', 'b', 'a']
swapIndices("abc", 0, 1); // => 'bac'
Data Last
swapIndices(index1, index2)(data);
swapIndices(0, 1)(["a", "b", "c"]); // => ['b', 'a', 'c']
swapIndices(0, -1)("abc"); // => 'cba'

Returns the first n elements of array.

Data First
R.take(array, n);
R.take([1, 2, 3, 4, 3, 2, 1], 3); // => [1, 2, 3]
Data Last
R.take(n)(array);
R.pipe([1, 2, 3, 4, 3, 2, 1], R.take(n)); // => [1, 2, 3]

takeFirstBy

View source on GitHub

Take the first n items from data based on the provided ordering criteria. This allows you to avoid sorting the array before taking the items. The complexity of this function is O(Nlogn) where N is the length of the array.

For the opposite operation (to drop n elements) see dropFirstBy.

Data First
R.takeFirstBy(data, n, ...rules);
R.takeFirstBy(["aa", "aaaa", "a", "aaa"], 2, (x) => x.length); // => ['a', 'aa']
Data Last
R.takeFirstBy(n, ...rules)(data);
R.pipe(
  ["aa", "aaaa", "a", "aaa"],
  R.takeFirstBy(2, (x) => x.length),
); // => ['a', 'aa']

Takes the last n elements from the array.

Data First
R.takeLast(array, n);
R.takeLast([1, 2, 3, 4, 5], 2); // => [4, 5]
Data Last
R.takeLast(n)(array);
R.takeLast(2)([1, 2, 3, 4, 5]); // => [4, 5]

takeLastWhile

View source on GitHub

Returns elements from the end of the array until the predicate returns false. The returned elements will be in the same order as in the original array.

Data First
R.takeLastWhile(data, predicate);
R.takeLastWhile([1, 2, 10, 3, 4, 5], (x) => x < 10); // => [3, 4, 5]
Data Last
R.takeLastWhile(predicate)(data);
R.pipe(
  [1, 2, 10, 3, 4, 5],
  R.takeLastWhile((x) => x < 10),
); // => [3, 4, 5]

Returns elements from the array until predicate returns false.

Data First
R.takeWhile(data, predicate);
R.takeWhile([1, 2, 3, 4, 3, 2, 1], (x) => x !== 4); // => [1, 2, 3]
Data Last
R.takeWhile(predicate)(data);
R.pipe(
  [1, 2, 3, 4, 3, 2, 1],
  R.takeWhile((x) => x !== 4),
); // => [1, 2, 3]

Calls an input function n times, returning an array containing the results of those function calls.

fn is passed one argument: The current value of n, which begins at 0 and is gradually incremented to n - 1.

Data First
R.times(count, fn);
R.times(5, R.identity()); //=> [0, 1, 2, 3, 4]
Data Last
R.times(fn)(count);
R.times(R.identity())(5); //=> [0, 1, 2, 3, 4]

Returns a new array containing only one copy of each element in the original list. Elements are compared by reference using Set.

Data First
R.unique(array);
R.unique([1, 2, 2, 5, 1, 6, 7]); // => [1, 2, 5, 6, 7]
Data Last
R.unique()(array);
R.pipe(
  [1, 2, 2, 5, 1, 6, 7], // only 4 iterations
  R.unique(),
  R.take(3),
); // => [1, 2, 5]

uniqueBy

Lazy
View source on GitHub

Returns a new array containing only one copy of each element in the original list transformed by a function. Elements are compared by reference using Set.

Data First
R.uniqueBy(data, keyFunction);
R.uniqueBy(
  [{ n: 1 }, { n: 2 }, { n: 2 }, { n: 5 }, { n: 1 }, { n: 6 }, { n: 7 }],
  (obj) => obj.n,
); // => [{n: 1}, {n: 2}, {n: 5}, {n: 6}, {n: 7}]
Data Last
R.uniqueBy(keyFunction)(data);
R.pipe(
  [{ n: 1 }, { n: 2 }, { n: 2 }, { n: 5 }, { n: 1 }, { n: 6 }, { n: 7 }], // only 4 iterations
  R.uniqueBy((obj) => obj.n),
  R.take(3),
); // => [{n: 1}, {n: 2}, {n: 5}]

uniqueWith

Lazy
View source on GitHub

Returns a new array containing only one copy of each element in the original list. Elements are compared by custom comparator isEquals.

Data First
R.uniqueWith(array, isEquals);
R.uniqueWith(
  [{ a: 1 }, { a: 2 }, { a: 2 }, { a: 5 }, { a: 1 }, { a: 6 }, { a: 7 }],
  R.equals,
); // => [{a: 1}, {a: 2}, {a: 5}, {a: 6}, {a: 7}]
Data Last
R.uniqueWith(isEquals)(array);
R.uniqueWith(R.equals)([
  { a: 1 },
  { a: 2 },
  { a: 2 },
  { a: 5 },
  { a: 1 },
  { a: 6 },
  { a: 7 },
]); // => [{a: 1}, {a: 2}, {a: 5}, {a: 6}, {a: 7}]
R.pipe(
  [{ a: 1 }, { a: 2 }, { a: 2 }, { a: 5 }, { a: 1 }, { a: 6 }, { a: 7 }], // only 4 iterations
  R.uniqueWith(R.equals),
  R.take(3),
); // => [{a: 1}, {a: 2}, {a: 5}]

Creates a new list from two supplied lists by pairing up equally-positioned items. The length of the returned list will match the shortest of the two inputs.

Data First
R.zip(first, second);
R.zip([1, 2], ["a", "b"]); // => [[1, 'a'], [2, 'b']]
Data Last
R.zip(second)(first);
R.zip(["a", "b"])([1, 2]); // => [[1, 'a'], [2, 'b']]

Creates a new list from two supplied lists by calling the supplied function with the same-positioned element from each list.

R.zipWith(fn)(first, second);
R.zipWith((a: string, b: string) => a + b)(["1", "2", "3"], ["a", "b", "c"]); // => ['1a', '2b', '3c']
Data Last
R.zipWith(second, fn)(first);
R.pipe(
  ["1", "2", "3"],
  R.zipWith(["a", "b", "c"], (a, b) => a + b),
); // => ['1a', '2b', '3c']
Data First
R.zipWith(first, second, fn);
R.zipWith(["1", "2", "3"], ["a", "b", "c"], (a, b) => a + b); // => ['1a', '2b', '3c']

capitalize

View source on GitHub
Data First
R.capitalize(data);
R.capitalize("hello world"); // "Hello world"
Data Last
R.capitalize()(data);
R.pipe("hello world", R.capitalize()); // "Hello world"

Determines whether the string ends with the provided suffix, and refines the output if possible. Uses the built-in String.prototype.endsWith.

Data First
R.endsWith(data, suffix);
R.endsWith("hello world", "hello"); // false
R.endsWith("hello world", "world"); // true
Data First
R.endsWith(data, suffix);
R.endsWith("hello world", "hello"); // false
R.endsWith("hello world", "world"); // true
Data Last
R.endsWith(data, suffix);
R.endsWith("hello world", "hello"); // false
R.endsWith("hello world", "world"); // true
Data First
R.endsWith(data, suffix);
R.endsWith("hello world", "hello"); // false
R.endsWith("hello world", "world"); // true

randomString

View source on GitHub

Random a non-cryptographic random string from characters a-zA-Z0-9.

Data First
R.randomString(length);
R.randomString(5); // => aB92J
Data Last
R.randomString()(length);
R.pipe(5, R.randomString()); // => aB92J

sliceString

View source on GitHub

Extracts a section of this string and returns it as a new string, without modifying the original string. Equivalent to String.prototype.slice.

Data Last
R.sliceString(data, indexStart, indexEnd);
R.sliceString("abcdefghijkl", 1); // => `bcdefghijkl`
R.sliceString("abcdefghijkl", 4, 7); // => `efg`
Data Last
R.sliceString(indexStart, indexEnd)(string);
R.sliceString(1)("abcdefghijkl"); // => `bcdefghijkl`
R.sliceString(4, 7)("abcdefghijkl"); // => `efg`

Takes a pattern and divides this string into an ordered list of substrings by searching for the pattern, puts these substrings into an array, and returns the array. This function mirrors the built-in String.prototype.split method.

Data First
R.split(data, separator, limit);
R.split("a,b,c", ","); //=> ["a", "b", "c"]
R.split("a,b,c", ",", 2); //=> ["a", "b"]
R.split("a1b2c3d", /\d/u); //=> ["a", "b", "c", "d"]
Data First
R.split(data, separator, limit);
R.split("a,b,c", ","); //=> ["a", "b", "c"]
R.split("a,b,c", ",", 2); //=> ["a", "b"]
R.split("a1b2c3d", /\d/u); //=> ["a", "b", "c", "d"]
Data Last
R.split(separator, limit)(data);
R.pipe("a,b,c", R.split(",")); //=> ["a", "b", "c"]
R.pipe("a,b,c", R.split(",", 2)); //=> ["a", "b"]
R.pipe("a1b2c3d", R.split(/\d/u)); //=> ["a", "b", "c", "d"]
Data First
R.split(data, separator, limit);
R.split("a,b,c", ","); //=> ["a", "b", "c"]
R.split("a,b,c", ",", 2); //=> ["a", "b"]
R.split("a1b2c3d", /\d/u); //=> ["a", "b", "c", "d"]

startsWith

View source on GitHub

Determines whether the string begins with the provided prefix, and refines the output if possible. Uses the built-in String.prototype.startsWith.

Data First
R.startsWith(data, prefix);
R.startsWith("hello world", "hello"); // true
R.startsWith("hello world", "world"); // false
Data First
R.startsWith(data, prefix);
R.startsWith("hello world", "hello"); // true
R.startsWith("hello world", "world"); // false
Data Last
R.startsWith(data, prefix);
R.startsWith("hello world", "hello"); // true
R.startsWith("hello world", "world"); // false
Data First
R.startsWith(data, prefix);
R.startsWith("hello world", "hello"); // true
R.startsWith("hello world", "world"); // false

toCamelCase

View source on GitHub

Convert a text to camelCase by splitting it into words, un-capitalizing the first word, capitalizing the rest, then joining them back together. This is the runtime implementation of type-fest's CamelCase type.

For other case manipulations see: toLowerCase, toUpperCase, capitalize, uncapitalize, toKebabCase, and toSnakeCase.

!IMPORTANT: This function might work incorrectly for non-ascii inputs.

For PascalCase use capitalize(toCamelCase(data)).

Data First
R.toCamelCase(data);
R.toCamelCase(data, { preserveConsecutiveUppercase });
R.toCamelCase("hello world"); // "helloWorld"
R.toCamelCase("__HELLO_WORLD__"); // "helloWorld"
R.toCamelCase("HasHtml"); // "hasHTML"
R.toCamelCase("HasHtml", { preserveConsecutiveUppercase: false }); // "hasHtml"
Data Last
R.toCamelCase()(data);
R.toCamelCase({ preserveConsecutiveUppercase })(data);
R.pipe("hello world", R.toCamelCase()); // "helloWorld"
R.pipe("__HELLO_WORLD__", toCamelCase()); // "helloWorld"
R.pipe("HasHtml", R.toCamelCase()); // "hasHTML"
R.pipe("HasHtml", R.toCamelCase({ preserveConsecutiveUppercase: false })); // "hasHtml"

toKebabCase

View source on GitHub

Convert a text to kebab-Case by splitting it into words and joining them back together with "-", and then lowering the case of the result.

For other case manipulations see: toLowerCase, toUpperCase, capitalize, uncapitalize, and toCamelCase.

!IMPORTANT: This function might work incorrectly for non-ascii inputs.

Data First
R.toKebabCase(data);
R.toKebabCase("hello world"); // "hello-world"
R.toKebabCase("__HELLO_WORLD__"); // "hello-world"
Data Last
R.toKebabCase()(data);
R.pipe("hello world", R.toKebabCase()); // "hello-world"
R.pipe("__HELLO_WORLD__", toKebabCase()); // "hello-world"

toLowerCase

View source on GitHub
Data First
R.toLowerCase(data);
R.toLowerCase("Hello World"); // "hello world"
Data Last
R.toLowerCase()(data);
R.pipe("Hello World", R.toLowerCase()); // "hello world"

toSnakeCase

View source on GitHub
Data First
R.toSnakeCase(data);
R.toSnakeCase("hello world"); // "hello_world"
R.toSnakeCase("__HELLO_WORLD__"); // "hello_world"
Data Last
R.toSnakeCase()(data);
R.pipe("hello world", R.toSnakeCase()); // "hello_world"
R.pipe("__HELLO_WORLD__", toSnakeCase()); // "hello_world"

toUpperCase

View source on GitHub

Replaces all lower-case characters to their upper-case equivalent in the input. Uses the built-in String.prototype.toUpperCase for the runtime, and the built-in Uppercase utility type for typing.

For other case manipulations see: toLowerCase, capitalize, uncapitalize, toCamelCase, toKebabCase, and toSnakeCase.

!IMPORTANT: This function might work incorrectly for non-ascii inputs. If the output is intended for display (on a browser) consider using the text-transform: uppercase; CSS property instead!

Data First
R.toUpperCase(data);
R.toUpperCase("Hello World"); // "HELLO WORLD"
Data Last
R.toUpperCase()(data);
R.pipe("Hello World", R.toUpperCase()); // "HELLO WORLD"

uncapitalize

View source on GitHub
Data First
R.uncapitalize(data);
R.uncapitalize("HELLO WORLD"); // "hELLO WORLD"
Data Last
R.uncapitalize()(data);
R.pipe("HELLO WORLD", R.uncapitalize()); // "hELLO WORLD"

conditional

View source on GitHub

Executes a transformer function based on the first matching predicate, functioning like a series of if...else if... statements. It sequentially evaluates each case and, upon finding a truthy predicate, runs the corresponding transformer, and returns, ignoring any further cases, even if they would match.

For simpler cases you should also consider using when instead.

!IMPORTANT! - Unlike similar implementations in frameworks like Lodash and Ramda, the Remeda implementation does NOT return a default/fallback undefined value when none of the cases match; and instead will throw an exception in those cases. To add a default case use the conditional.defaultCase helper as the final case of your implementation. By default it returns undefined, but could be provided a transformer in order to return something else.

Due to TypeScript's inability to infer the result of negating a type- predicate we can't refine the types used in subsequent cases based on previous conditions. Using a switch (true) statement or ternary operators is recommended for more precise type control when such type narrowing is needed.

Data Last
R.conditional(...cases)(data);
const nameOrId = 3 as string | number;
R.pipe(
  nameOrId,
  R.conditional(
    [R.isString, (name) => `Hello ${name}`],
    [R.isNumber, (id) => `Hello ID: ${id}`],
    R.conditional.defaultCase(
      (something) => `Hello something (${JSON.stringify(something)})`,
    ),
  ),
); //=> 'Hello ID: 3'
Data First
R.conditional(data, ...cases);
const nameOrId = 3 as string | number;
R.conditional(
  nameOrId,
  [R.isString, (name) => `Hello ${name}`],
  [R.isNumber, (id) => `Hello ID: ${id}`],
  R.conditional.defaultCase(
    (something) => `Hello something (${JSON.stringify(something)})`,
  ),
); //=> 'Hello ID: 3'

constant

View source on GitHub

A function that takes any arguments and returns the provided value on every invocation. This is useful to provide trivial implementations for APIs or in combination with a ternary or other conditional execution to allow to short- circuit more complex implementations for a specific case.

Notice that this is a dataLast impl where the function needs to be invoked to get the "do nothing" function.

See also: doNothing - A function that doesn't return anything. identity - A function that returns the first argument it receives.

Data Last
R.constant(value);
R.map([1, 2, 3], R.constant("a")); // => ['a', 'a', 'a']
R.map([1, 2, 3], isDemoMode ? R.add(1) : R.constant(0)); // => [2, 3, 4] or [0, 0, 0]

debounce

View source on GitHub

Wraps func with a debouncer object that "debounces" (delays) invocations of the function during a defined cool-down period (waitMs). It can be configured to invoke the function either at the start of the cool-down period, the end of it, or at both ends (timing). It can also be configured to allow invocations during the cool-down period (maxWaitMs). It stores the latest call's arguments so they could be used at the end of the cool-down period when invoking func (if configured to invoke the function at the end of the cool-down period). It stores the value returned by func whenever its invoked. This value is returned on every call, and is accessible via the cachedValue property of the debouncer. Its important to note that the value might be different from the value that would be returned from running func with the current arguments as it is a cached value from a previous invocation. Important: The cool-down period defines the minimum between two invocations, and not the maximum. The period will be extended each time a call is made until a full cool-down period has elapsed without any additional calls.

Data First
R.debounce(func, options);
const debouncer = debounce(identity(), { timing: "trailing", waitMs: 1000 });
const result1 = debouncer.call(1); // => undefined
const result2 = debouncer.call(2); // => undefined
// after 1 second
const result3 = debouncer.call(3); // => 2
// after 1 second
debouncer.cachedValue; // => 3
Data First
R.debounce(func, options);
const debouncer = debounce(identity(), { timing: "trailing", waitMs: 1000 });
const result1 = debouncer.call(1); // => undefined
const result2 = debouncer.call(2); // => undefined
// after 1 second
const result3 = debouncer.call(3); // => 2
// after 1 second
debouncer.cachedValue; // => 3

doNothing

View source on GitHub

A function that takes any arguments and does nothing with them. This is useful as a placeholder for any function or API that requires a void function (a function that doesn't return a value). This could also be used in combination with a ternary or other conditional execution to allow disabling a function call for a specific case.

Notice that this is a dataLast impl where the function needs to be invoked to get the "do nothing" function.

See also:

  • constant - A function that ignores it's arguments and returns the same value on every invocation.
  • identity - A function that returns the first argument it receives.
Data Last
R.doNothing();
myApi({ onSuccess: handleSuccess, onError: R.doNothing() });
myApi({ onSuccess: isDemoMode ? R.doNothing() : handleSuccess });

identity

View source on GitHub

A function that returns the first argument passed to it.

Notice that this is a dataLast impl where the function needs to be invoked to get the "do nothing" function.

See also:

  • doNothing - A function that doesn't return anything.
  • constant - A function that ignores the input arguments and returns the same value on every invocation.
R.identity();
R.map([1, 2, 3], R.identity()); // => [1,2,3]

Creates a function that is restricted to invoking func once. Repeat calls to the function return the value of the first invocation.

R.once(fn);
const initialize = R.once(createApplication);
initialize();
initialize();
// => `createApplication` is invoked once

partialBind

View source on GitHub

Creates a function that calls func with partial put before the arguments it receives.

Can be thought of as "freezing" some portion of a function's arguments, resulting in a new function with a simplified signature.

Data First
R.partialBind(func, partial);
const fn = (x, y, z) => `${x}, ${y}, and ${z}`;
const partialFn = R.partialBind(fn, [1, 2]);
partialFn(3); // => 1, 2, and 3

const logWithPrefix = R.partialBind(console.log, ["[prefix]"]);
logWithPrefix("hello"); // => "[prefix] hello"

partialLastBind

View source on GitHub

Creates a function that calls func with partial put after the arguments it receives. Note that this doesn't support functions with both optional and rest parameters.

Can be thought of as "freezing" some portion of a function's arguments, resulting in a new function with a simplified signature.

Useful for converting a data-first function to a data-last one.

Data First
R.partialLastBind(func, partial);
const fn = (x, y, z) => `${x}, ${y}, and ${z}`;
const partialFn = R.partialLastBind(fn, [2, 3]);
partialFn(1); // => 1, 2, and 3

const parseBinary = R.partialLastBind(parseInt, ["2"]);
parseBinary("101"); // => 5

R.pipe(
  { a: 1 },
  // instead of (arg) => JSON.stringify(arg, null, 2)
  R.partialLastBind(JSON.stringify, [null, 2]),
); // => '{\n  "a": 1\n}'

Perform left-to-right function composition.

Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]
Data First
R.pipe(data, op1, op2, op3);
R.pipe(
  [1, 2, 3, 4],
  R.map((x) => x * 2),
  (arr) => [arr[0] + arr[1], arr[2] + arr[3]],
); // => [6, 14]

A dataLast version of pipe that could be used to provide more complex computations to functions that accept a function as a param (like map, filter, groupBy, etc.).

The first function must be always annotated. Other functions are automatically inferred.

R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]
R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]
R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]
R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]
R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]
R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]
R.piped(...ops)(data);
R.filter(
  [{ a: 1 }, { a: 2 }, { a: 3 }],
  R.piped(R.prop("a"), (x) => x % 2 === 0),
); // => [{ a: 2 }]

Creates a function with dataFirst and dataLast signatures.

purry is a dynamic function and it's not type safe. It should be wrapped by a function that have proper typings. Refer to the example below for correct usage.

!IMPORTANT: functions that simply call purry and return the result (like almost all functions in this library) should return unknown themselves if an explicit return type is required. This is because we currently don't provide a generic return type that is built from the input function, and crafting one manually isn't worthwhile as we rely on function declaration overloading to combine the types for dataFirst and dataLast invocations!

R.purry(fn, args);
function _findIndex(array, fn) {
  for (let i = 0; i < array.length; i++) {
    if (fn(array[i])) {
      return i;
    }
  }
  return -1;
}

// data-first
function findIndex<T>(array: T[], fn: (item: T) => boolean): number;

// data-last
function findIndex<T>(fn: (item: T) => boolean): (array: T[]) => number;

function findIndex(...args: unknown[]) {
  return R.purry(_findIndex, args);
}

Conditionally run a function based on a predicate, returning it's result (similar to the ?: (ternary) operator.) If the optional onFalse function is not provided, the data will be passed through in those cases.

Supports type predicates to refine the types for both branches and the return value.

Additional arguments are passed to all functions. In data-first calls, they are taken as variadic arguments; but in data-last calls, they are when the curried function itself is called.

For more complex cases check out conditional.

Data Last
when(predicate, onTrue)(data, ...extraArgs);
when(predicate, { onTrue, onFalse })(data, ...extraArgs);
pipe(data, when(isNullish, constant(42)));
pipe(
  data,
  when((x) => x > 3, { onTrue: add(1), onFalse: multiply(2) }),
);
map(
  data,
  when(isNullish, (x, index) => x + index),
);
Data Last
when(predicate, onTrue)(data, ...extraArgs);
when(predicate, { onTrue, onFalse })(data, ...extraArgs);
pipe(data, when(isNullish, constant(42)));
pipe(
  data,
  when((x) => x > 3, { onTrue: add(1), onFalse: multiply(2) }),
);
map(
  data,
  when(isNullish, (x, index) => x + index),
);
Data First
when(data, predicate, onTrue, ...extraArgs);
when(data, predicate, { onTrue, onFalse }, ...extraArgs);
when(data, isNullish, constant(42));
when(data, (x) => x > 3, { onTrue: add(1), onFalse: multiply(2) });
when(data, isString, (x, radix) => parseInt(x, radix), 10);
Data Last
when(predicate, onTrue)(data, ...extraArgs);
when(predicate, { onTrue, onFalse })(data, ...extraArgs);
pipe(data, when(isNullish, constant(42)));
pipe(
  data,
  when((x) => x > 3, { onTrue: add(1), onFalse: multiply(2) }),
);
map(
  data,
  when(isNullish, (x, index) => x + index),
);

hasSubObject

View source on GitHub

Checks if subObject is a sub-object of object, which means for every property and value in subObject, there's the same property in object with an equal value. Equality is checked with isDeepEqual.

Data First
R.hasSubObject(data, subObject);
R.hasSubObject({ a: 1, b: 2, c: 3 }, { a: 1, c: 3 }); //=> true
R.hasSubObject({ a: 1, b: 2, c: 3 }, { b: 4 }); //=> false
R.hasSubObject({ a: 1, b: 2, c: 3 }, {}); //=> true
Data Last
R.hasSubObject(subObject)(data);
R.hasSubObject({ a: 1, c: 3 })({ a: 1, b: 2, c: 3 }); //=> true
R.hasSubObject({ b: 4 })({ a: 1, b: 2, c: 3 }); //=> false
R.hasSubObject({})({ a: 1, b: 2, c: 3 }); //=> true

A function that checks if the passed parameter is an Array and narrows its type accordingly.

R.isArray(data);
R.isArray([5]); //=> true
R.isArray([]); //=> true
R.isArray("somethingElse"); //=> false

A function that checks if the passed parameter is a bigint and narrows its type accordingly.

R.isBigInt(data);
R.isBigInt(1n); // => true
R.isBigInt(1); // => false
R.isBigInt("notANumber"); // => false

A function that checks if the passed parameter is a boolean and narrows its type accordingly.

R.isBoolean(data);
R.isBoolean(true); //=> true
R.isBoolean(false); //=> true
R.isBoolean("somethingElse"); //=> false

A function that checks if the passed parameter is a Date and narrows its type accordingly.

R.isDate(data);
R.isDate(new Date()); //=> true
R.isDate("somethingElse"); //=> false

isDeepEqual

View source on GitHub

Performs a deep structural comparison between two values to determine if they are equivalent. For primitive values this is equivalent to ===, for arrays the check would be performed on every item recursively, in order, and for objects all props will be compared recursively.

The built-in Date and RegExp are special-cased and will be compared by their values.

!IMPORTANT: TypedArrays and symbol properties of objects are not supported right now and might result in unexpected behavior. Please open an issue in the Remeda github project if you need support for these types.

The result would be narrowed to the second value so that the function can be used as a type guard.

See:

  • isStrictEqual if you don't need a deep comparison and just want to check for simple (===, Object.is) equality.
  • isShallowEqual if you need to compare arrays and objects "by-value" but don't want to recurse into their values.
Data First
R.isDeepEqual(data, other);
R.isDeepEqual(1, 1); //=> true
R.isDeepEqual(1, "1"); //=> false
R.isDeepEqual([1, 2, 3], [1, 2, 3]); //=> true
Data First
R.isDeepEqual(data, other);
R.isDeepEqual(1, 1); //=> true
R.isDeepEqual(1, "1"); //=> false
R.isDeepEqual([1, 2, 3], [1, 2, 3]); //=> true
Data Last
R.isDeepEqual(other)(data);
R.pipe(1, R.isDeepEqual(1)); //=> true
R.pipe(1, R.isDeepEqual("1")); //=> false
R.pipe([1, 2, 3], R.isDeepEqual([1, 2, 3])); //=> true
Data First
R.isDeepEqual(data, other);
R.isDeepEqual(1, 1); //=> true
R.isDeepEqual(1, "1"); //=> false
R.isDeepEqual([1, 2, 3], [1, 2, 3]); //=> true

A function that checks if the passed parameter is defined (!== undefined) and narrows its type accordingly.

R.isDefined(data);
R.isDefined("string"); //=> true
R.isDefined(null); //=> true
R.isDefined(undefined); //=> false

A function that checks if the passed parameter is empty.

undefined is also considered empty, but only when it's in a union with a string or string-like type.

This guard doesn't work negated because of typescript limitations! If you need to check that an array is not empty, use R.hasAtLeast(data, 1) and not !R.isEmpty(data). For strings and objects there's no way in typescript to narrow the result to a non-empty type.

R.isEmpty(data);
R.isEmpty(undefined); //=>true
R.isEmpty(""); //=> true
R.isEmpty([]); //=> true
R.isEmpty({}); //=> true
R.isEmpty("test"); //=> false
R.isEmpty([1, 2, 3]); //=> false
R.isEmpty({ length: 0 }); //=> false
R.isEmpty(data);
R.isEmpty(undefined); //=>true
R.isEmpty(""); //=> true
R.isEmpty([]); //=> true
R.isEmpty({}); //=> true
R.isEmpty("test"); //=> false
R.isEmpty([1, 2, 3]); //=> false
R.isEmpty({ length: 0 }); //=> false
R.isEmpty(data);
R.isEmpty(undefined); //=>true
R.isEmpty(""); //=> true
R.isEmpty([]); //=> true
R.isEmpty({}); //=> true
R.isEmpty("test"); //=> false
R.isEmpty([1, 2, 3]); //=> false
R.isEmpty({ length: 0 }); //=> false

A function that checks if the passed parameter is an Error and narrows its type accordingly.

R.isError(data);
R.isError(new Error("message")); //=> true
R.isError("somethingElse"); //=> false

A function that checks if the passed parameter is a Function and narrows its type accordingly.

R.isFunction(data);
R.isFunction(() => {}); //=> true
R.isFunction("somethingElse"); //=> false

isIncludedIn

View source on GitHub

Checks if the item is included in the container. This is a wrapper around Array.prototype.includes and Set.prototype.has and thus relies on the same equality checks that those functions do (which is reference equality, e.g. ===). In some cases the input's type is also narrowed to the container's item types.

Notice that unlike most functions, this function takes a generic item as it's data and an array as it's parameter.

Data First
R.isIncludedIn(data, container);
R.isIncludedIn(2, [1, 2, 3]); // => true
R.isIncludedIn(4, [1, 2, 3]); // => false

const data = "cat" as "cat" | "dog" | "mouse";
R.isIncludedIn(data, ["cat", "dog"] as const); // true (typed "cat" | "dog");
Data First
R.isIncludedIn(data, container);
R.isIncludedIn(2, [1, 2, 3]); // => true
R.isIncludedIn(4, [1, 2, 3]); // => false

const data = "cat" as "cat" | "dog" | "mouse";
R.isIncludedIn(data, ["cat", "dog"] as const); // true (typed "cat" | "dog");
Data Last
R.isIncludedIn(container)(data);
R.pipe(2, R.isIncludedIn([1, 2, 3])); // => true
R.pipe(4, R.isIncludedIn([1, 2, 3])); // => false

const data = "cat" as "cat" | "dog" | "mouse";
R.pipe(data, R.isIncludedIn(["cat", "dog"] as const)); // => true (typed "cat" | "dog");
Data First
R.isIncludedIn(data, container);
R.isIncludedIn(2, [1, 2, 3]); // => true
R.isIncludedIn(4, [1, 2, 3]); // => false

const data = "cat" as "cat" | "dog" | "mouse";
R.isIncludedIn(data, ["cat", "dog"] as const); // true (typed "cat" | "dog");

A function that checks if the passed parameter is not null and narrows its type accordingly. Notice that undefined is not null!

R.isNonNull(data);
R.isNonNull("string"); //=> true
R.isNonNull(null); //=> false
R.isNonNull(undefined); //=> true

isNonNullish

View source on GitHub

A function that checks if the passed parameter is defined AND isn't null and narrows its type accordingly.

R.isNonNullish(data);
R.isNonNullish("string"); //=> true
R.isNonNullish(null); //=> false
R.isNonNullish(undefined); //=> false

A function that takes a guard function as predicate and returns a guard that negates it.

Data Last
R.isNot(R.isTruthy)(data);
R.isNot(R.isTruthy)(false); //=> true
R.isNot(R.isTruthy)(true); //=> false
Data Last
R.isNot(R.isTruthy)(data);
R.isNot(R.isTruthy)(false); //=> true
R.isNot(R.isTruthy)(true); //=> false

A function that checks if the passed parameter is either null or undefined and narrows its type accordingly.

R.isNullish(data);
R.isNullish(undefined); //=> true
R.isNullish(null); //=> true
R.isNullish("somethingElse"); //=> false

A function that checks if the passed parameter is a number and narrows its type accordingly.

R.isNumber(data);
R.isNumber(1); // => true
R.isNumber(1n); // => false
R.isNumber("notANumber"); // => false

isObjectType

View source on GitHub

Checks if the given parameter is of type "object" via typeof, excluding null.

It's important to note that in JavaScript, many entities are considered objects, like Arrays, Classes, RegExps, Maps, Sets, Dates, URLs, Promise, Errors, and more. Although technically an object too, null is not considered an object by this function, so that its easier to narrow nullables.

For a more specific check that is limited to plain objects (simple struct/shape/record-like objects), consider using isPlainObject instead. For a simpler check that only removes null from the type prefer isNonNull or isDefined.

Data First
R.isObjectType(data);
// true
R.isObjectType({}); //=> true
R.isObjectType([]); //=> true
R.isObjectType(Promise.resolve("something")); //=> true
R.isObjectType(new Date()); //=> true
R.isObjectType(new Error("error")); //=> true

// false
R.isObjectType("somethingElse"); //=> false
R.isObjectType(null); //=> false

isPlainObject

View source on GitHub

Checks if data is a "plain" object. A plain object is defined as an object with string keys and values of any type, including primitives, other objects, functions, classes, etc (aka struct/shape/record/simple). Technically, a plain object is one whose prototype is either Object.prototype or null, ensuring it does not inherit properties or methods from other object types.

This function is narrower in scope than isObjectType, which accepts any entity considered an "object" by JavaScript's typeof.

Note that Maps, Arrays, and Sets are not considered plain objects and would return false.

R.isPlainObject(data);
// true
R.isPlainObject({}); //=> true
R.isPlainObject({ a: 123 }); //=> true

// false
R.isPlainObject([]); //=> false
R.isPlainObject(Promise.resolve("something")); //=> false
R.isPlainObject(new Date()); //=> false
R.isPlainObject(new Error("error")); //=> false
R.isPlainObject("somethingElse"); //=> false
R.isPlainObject(null); //=> false

A function that checks if the passed parameter is a Promise and narrows its type accordingly.

R.isPromise(data);
R.isPromise(Promise.resolve(5)); //=> true
R.isPromise(Promise.reject(5)); //=> true
R.isPromise("somethingElse"); //=> false

isShallowEqual

View source on GitHub

Performs a shallow structural comparison between two values to determine if they are equivalent. For primitive values this is equivalent to ===, for arrays a strict equality check would be performed on every item, in order, and for objects props will be matched and checked for strict equality; Unlike isDeepEqual where the function also recurses into each item and value.

!IMPORTANT: symbol properties of objects are not supported right now and might result in unexpected behavior. Please open an issue in the Remeda github project if you need support for these types.

!IMPORTANT: Promise, Date, and RegExp, are shallowly equal, even when they are semantically different (e.g. resolved promises); but isDeepEqual does compare the latter 2 semantically by-value.

The result would be narrowed to the second value so that the function can be used as a type guard.

See:

  • isStrictEqual if you don't need a deep comparison and just want to check for simple (===, Object.is) equality.
  • isDeepEqual for a recursively deep check of arrays and objects.
Data First
R.isShallowEqual(data, other);
R.isShallowEqual(1, 1); //=> true
R.isShallowEqual(1, "1"); //=> false
R.isShallowEqual([1, 2, 3], [1, 2, 3]); //=> true
R.isShallowEqual([[1], [2], [3]], [[1], [2], [3]]); //=> false
Data First
R.isShallowEqual(data, other);
R.isShallowEqual(1, 1); //=> true
R.isShallowEqual(1, "1"); //=> false
R.isShallowEqual([1, 2, 3], [1, 2, 3]); //=> true
R.isShallowEqual([[1], [2], [3]], [[1], [2], [3]]); //=> false
Data First
R.isShallowEqual(other)(data);
R.pipe(1, R.isShallowEqual(1)); //=> true
R.pipe(1, R.isShallowEqual("1")); //=> false
R.pipe([1, 2, 3], R.isShallowEqual([1, 2, 3])); //=> true
R.pipe([[1], [2], [3]], R.isShallowEqual([[1], [2], [3]])); //=> false
Data First
R.isShallowEqual(data, other);
R.isShallowEqual(1, 1); //=> true
R.isShallowEqual(1, "1"); //=> false
R.isShallowEqual([1, 2, 3], [1, 2, 3]); //=> true
R.isShallowEqual([[1], [2], [3]], [[1], [2], [3]]); //=> false

isStrictEqual

View source on GitHub

Determines whether two values are functionally identical in all contexts. For primitive values (string, number), this is done by-value, and for objects it is done by-reference (i.e., they point to the same object in memory).

Under the hood we use both the === operator and Object.is. This means that isStrictEqual(NaN, NaN) === true (whereas NaN !== NaN), and isStrictEqual(-0, 0) === true (whereas Object.is(-0, 0) === false).

The result would be narrowed to the second value so that the function can be used as a type guard.

See:

  • isDeepEqual for a semantic comparison that allows comparing arrays and objects "by-value", and recurses for every item.
  • isShallowEqual if you need to compare arrays and objects "by-value" but don't want to recurse into their values.
Data First
R.isStrictEqual(data, other);
R.isStrictEqual(1, 1); //=> true
R.isStrictEqual(1, "1"); //=> false
R.isStrictEqual([1, 2, 3], [1, 2, 3]); //=> false
Data First
R.isStrictEqual(data, other);
R.isStrictEqual(1, 1); //=> true
R.isStrictEqual(1, "1"); //=> false
R.isStrictEqual([1, 2, 3], [1, 2, 3]); //=> false
Data Last
R.isStrictEqual(other)(data);
R.pipe(1, R.isStrictEqual(1)); //=> true
R.pipe(1, R.isStrictEqual("1")); //=> false
R.pipe([1, 2, 3], R.isStrictEqual([1, 2, 3])); //=> false
Data First
R.isStrictEqual(data, other);
R.isStrictEqual(1, 1); //=> true
R.isStrictEqual(1, "1"); //=> false
R.isStrictEqual([1, 2, 3], [1, 2, 3]); //=> false

A function that checks if the passed parameter is a string and narrows its type accordingly.

R.isString(data);
R.isString("string"); //=> true
R.isString(1); //=> false

A function that checks if the passed parameter is a symbol and narrows its type accordingly.

R.isSymbol(data);
R.isSymbol(Symbol("foo")); //=> true
R.isSymbol(1); //=> false

A function that checks if the passed parameter is truthy and narrows its type accordingly.

R.isTruthy(data);
R.isTruthy("somethingElse"); //=> true
R.isTruthy(null); //=> false
R.isTruthy(undefined); //=> false
R.isTruthy(false); //=> false
R.isTruthy(0); //=> false
R.isTruthy(""); //=> false

stringToPath

View source on GitHub

Converts a path string to an array of string keys (including array index access keys).

! IMPORTANT: Attempting to pass a simple string type will result in the result being inferred as never. This is intentional to help with type- safety as this function is primarily intended to help with other "object path access" functions like pathOr or setPath.

Data First
R.stringToPath(path);

Calls the given function with the given value, then returns the given value. The return value of the provided function is ignored.

This allows "tapping into" a function sequence in a pipe, to perform side effects on intermediate results.

Data First
R.tap(value, fn);
R.tap("foo", console.log); // => "foo"
Data Last
R.tap(fn)(value);
R.pipe(
  [-5, -1, 2, 3],
  R.filter((n) => n > 0),
  R.tap(console.log), // prints [2, 3]
  R.map((n) => n * 2),
); // => [4, 6]